The effects of pH, ionic strength and organic phase on the bacterial adhesion to hydrocarbons (BATH) test

1993 ◽  
Vol 99 (2-3) ◽  
pp. 93-98 ◽  
Author(s):  
Craig R. Bunt ◽  
David S. Jones ◽  
Ian G. Tucker
1979 ◽  
Vol 44 (12) ◽  
pp. 3656-3664
Author(s):  
Oldřich Navrátil ◽  
Jiří Smola ◽  
Rostislav Kolouch

Extraction of hafnium(IV) was studied from solutions of mixtures of perchloric and nitric acids and of perchloric and hydrochloric acids for constant ionic strength, I = 2, 4, 6, or 8, and for cHf 4 . 10-4 mol l-1. The organic phase was constituted by solutions of some acidic or neutral organophosphorus reagents or of 2-thenoyltrifluoroacetone, 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone, or N-benzoyl-N-phenylhydroxylamine in benzene, chloroform, or n-octane. A pronounced synergic extraction of hafnium proceeds only on applying organophosphorus reagents from an aqueous phase whose acidity is not lower than 3M-(HClO4 + HNO3) or 5M-(HClO4 + HCl). The synergic effect was not affected markedly by a variation of the initial concentration of hafnium in the range 1 . 10-8 -4 .10-4 mol l-1, it lowered with increasing initial concentration of the organophosphorus reagent and decreasing concentration of the H+ ions. It is suggested that the hafnium passes into the organic phase in the form of mixed complexes, the salting-out effect of perchloric acid playing an appreciable part.


2011 ◽  
Vol 87 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Bing Fang ◽  
Saugata Gon ◽  
Myoung Park ◽  
Kushi-Nidhi Kumar ◽  
Vincent M. Rotello ◽  
...  

Soil Research ◽  
1981 ◽  
Vol 19 (1) ◽  
pp. 93 ◽  
Author(s):  
GP Gillman

The cation exchange capacity of six surface soils from north Queensland and Hawaii has been measured over a range of pH values (4-6) and ionic strength values (0.003-0.05). The results show that for variable charge soils, modest changes in electrolyte ionic strength are as important in their effect on caton exchange capacity as are changes in pH values.


2016 ◽  
Vol 145 (18) ◽  
pp. 185101 ◽  
Author(s):  
Ronald W. Thompson ◽  
Ramil F. Latypov ◽  
Ying Wang ◽  
Aleksey Lomakin ◽  
Julie A. Meyer ◽  
...  

2006 ◽  
Vol 84 (11) ◽  
pp. 1668-1677 ◽  
Author(s):  
Jon K. Skei ◽  
Dag Dolmen

Larval Bufo bufo (L., 1758) and Triturus vulgaris (L., 1758) were exposed to soft water (0.5 mg·L–1 Ca2+) experimentally acidified to pH 3.9 to 5.9 and total aluminium concentrations of <10, 150, and 300 µg·L–1. Below pH 4.5 both species experienced increased mortality. The LC50 (168 h) for <10 and 150 µg·L–1 Al was pH 4.3 and 4.1 for B. bufo and 4.2 and 4.1 for T. vulgaris. However, Al3+ increased the survival of both species, which may be due to the contribution of Al3+ to the ionic strength. No B. bufo larvae died at pH >4.5, whereas T. vulgaris at higher Al concentrations suffered relatively high mortality at pH 5.1–5.9, where Al occurs mainly as Al(OH)2+ and Al(OH)2+. Unlike external gills (T. vulgaris), internal gills (B. bufo) have their own internal environment and are probably better protected against the presence of these toxic Al species in the water. These Al species thus seem to be toxic to T. vulgaris larvae but not to B. bufo. Chloride was seen to be important for survival in water of low ionic strength, since the survival of T. vulgaris larvae, particularly at low Al concentration, increased at pH levels down to pH 4.3 when the water was acidified with HCl.


2010 ◽  
Vol 46 (5) ◽  
pp. 531-535 ◽  
Author(s):  
Kazutoshi Saeki ◽  
Takashi Kunito ◽  
Masao Sakai

Sign in / Sign up

Export Citation Format

Share Document