Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse

1990 ◽  
Vol 49 (1-3) ◽  
pp. 105-118 ◽  
Author(s):  
M.Christian Brown ◽  
John V Ledwith
1999 ◽  
Vol 6 (4) ◽  
pp. 147-172 ◽  
Author(s):  
Peter Cariani

This paper outlines a taxonomy of neural pulse codes and reviews neurophysiological evidence for interspike interval-based representations for pitch and timbre in the auditory nerve and cochlear nucleus. Neural pulse codes can be divided into channel-based codes, temporal-pattern codes, and time-of-arrival codes. Timings of discharges in auditory nerve fibers reflect the time structure of acoustic waveforms, such that the interspike intervals that are produced precisely convey information concerning stimulus periodicities. Population-wide inter-spike interval distributions are constructed by summing together intervals from the observed responses of many single Type I auditory nerve fibers. Features in such distributions correspond closely with pitches that are heard by human listeners. The most common all-order interval present in the auditory nerve array almost invariably corresponds to the pitch frequency, whereas the relative fraction of pitchrelated intervals amongst all others qualitatively corresponds to the strength of the pitch. Consequently, many diverse aspects of pitch perception are explained in terms of such temporal representations. Similar stimulus-driven temporal discharge patterns are observed in major neuronal populations of the cochlear nucleus. Population-interval distributions constitute an alternative time-domain strategy for representing sensory information that complements spatially organized sensory maps. Similar autocorrelation-like representations are possible in other sensory systems, in which neural discharges are time-locked to stimulus waveforms.


2003 ◽  
Vol 89 (6) ◽  
pp. 3097-3113 ◽  
Author(s):  
Jason S. Rothman ◽  
Paul B. Manis

Using kinetic data from three different K+ currents in acutely isolated neurons, a single electrical compartment representing the soma of a ventral cochlear nucleus (VCN) neuron was created. The K+ currents include a fast transient current ( IA), a slow-inactivating low-threshold current ( ILT), and a noninactivating high-threshold current ( IHT). The model also includes a fast-inactivating Na+ current, a hyperpolarization-activated cation current ( Ih), and 1–50 auditory nerve synapses. With this model, the role IA, ILT, and IHT play in shaping the discharge patterns of VCN cells is explored. Simulation results indicate that IHT mainly functions to repolarize the membrane during an action potential, and IA functions to modulate the rate of repetitive firing. ILT is found to be responsible for the phasic discharge pattern observed in Type II cells (bushy cells). However, by adjusting the strength of ILT, both phasic and regular discharge patterns are observed, demonstrating that a critical level of ILT is necessary to produce the Type II response. Simulated Type II cells have a significantly faster membrane time constant in comparison to Type I cells (stellate cells) and are therefore better suited to preserve temporal information in their auditory nerve inputs by acting as precise coincidence detectors and having a short refractory period. Finally, we demonstrate that modulation of Ih, which changes the resting membrane potential, is a more effective means of modulating the activation level of ILT than simply modulating ILT itself. This result may explain why ILT and Ih are often coexpressed throughout the nervous system.


1986 ◽  
Vol 56 (2) ◽  
pp. 261-286 ◽  
Author(s):  
W. S. Rhode ◽  
P. H. Smith

Physiological response properties of neurons in the ventral cochlear nucleus have a variety of features that are substantially different from the stereotypical auditory nerve responses that serve as the principal source of activation for these neurons. These emergent features are the result of the varying distribution of auditory nerve inputs on the soma and dendrites of the various cell types within the nucleus; the intrinsic membrane characteristics of the various cell types causing different responses to the same input in different cell types; and secondary excitatory and inhibitory inputs to different cell types. Well-isolated units were recorded with high-impedance glass microelectrodes, both intracellularly and extracellularly. Units were characterized by their temporal response to short tones, rate vs. intensity relation, and response areas. The principal response patterns were onset, chopper, and primary-like. Onset units are characterized by a well-timed first spike in response to tones at the characteristic frequency. For frequencies less than 1 kHz, onset units can entrain to the stimulus frequency with greater precision than their auditory nerve inputs. This implies that onset units receive converging inputs from a number of auditory nerve fibers. Onset units are divided into three subcategories, OC, OL, and OI. OC units have extraordinarily wide dynamic ranges and low-frequency selectivity. Some are capable of sustaining firing rates of 800 spikes/s at high intensities. They have the smallest standard deviation and coefficient of variation of the first spike latency of any cells in the cochlear nuclei. OC units are candidates for encoding intensity. OI and OL units differ from OC units in that they have dynamic ranges and frequency selectivity ranges much like those of auditory nerve fibers. They differ from one another in their steady-state firing rates; OI units fire mainly at the onset of a tone. OI units also differ from OL units in that they prefer frequency sweeps in the low to high direction. Primary-like-with-notch (PLN) units also respond to tones with a well-timed first spike. They differ from onset cells in that the onset peak is not always as precise as the spontaneous rate is higher. A comparison of spontaneous firing rate and saturation firing rate of PLN units with auditory nerve fibers suggest that PLN units receive one to four auditory nerve fiber inputs. Chopper units fire in a sustained regular manner when they are excited by sound.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 77 (1) ◽  
pp. 364-377 ◽  
Author(s):  
Christine Köppl

Köppl, Christine. Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. J. Neurophysiol. 77: 364–377, 1997. Single-unit recordings were obtained from the brain stem of the barn owl at the level of entrance of the auditory nerve. Auditory nerve and nucleus magnocellularis units were distinguished by physiological criteria, with the use of the response latency to clicks, the spontaneous discharge rate, and the pattern of characteristic frequencies encountered along an electrode track. The response latency to click stimulation decreased in a logarithmic fashion with increasing characteristic frequency for both auditory nerve and nucleus magnocellularis units. The average difference between these populations was 0.4–0.55 ms. The most sensitive thresholds were ∼0 dB SPL and varied little between 0.5 and 9 kHz. Frequency-threshold curves showed the simple V shape that is typical for birds, with no indication of a low-frequency tail. Frequency selectivity increased in a gradual, power-law fashion with increasing characteristic frequency. There was no reflection of the unusual and greatly expanded mapping of higher frequencies on the basilar papilla of the owl. This observation is contrary to the equal-distance hypothesis that relates frequency selectivity to the spatial respresentation in the cochlea. On the basis of spontaneous rates and/or sensitivity there was no evidence for distinct subpopulations of auditory nerve fibers, such as the well-known type I afferent response classes in mammals. On the whole, barn owl auditory nerve physiology conformed entirely to the typical patterns seen in other bird species. The only exception was a remarkably small spread of thresholds at any one frequency, this being only 10–15 dB in individual owls. Average spontaneous rate was 72.2 spikes/s in the auditory nerve and 219.4 spikes/s for nucleus magnocellularis. This large difference, together with the known properties of endbulb-of-Held synapses, suggests a convergence of ∼2–4 auditory nerve fibers onto one nucleus magnocellularis neuron. Some auditory nerve fibers as well as nucleus magnocellularis units showed a quasiperiodic spontaneous discharge with preferred intervals in the time-interval histogram. This phenomenon was observed at frequencies as high as 4.7 kHz.


1996 ◽  
Vol 75 (1) ◽  
pp. 380-395 ◽  
Author(s):  
D. Jiang ◽  
A. R. Palmer ◽  
I. M. Winter

1. The frequency threshold curves (FTCs) of 91 single units in the cochlear nucleus of the anesthetized guinea pig were measured using a conventional single-tone paradigm and a two-tone paradigm designed to elucidate the frequency extent of two-tone facilitation in onset units (On). Units were classified according to existing classification schemes into primary-like (n = 3), chopper (n = 23), and three onset groups: OnI (n = 12), OnC (n = 29), and OnL (n = 24). Histological reconstructions show onset units to be widely distributed within the ventral cochlear nucleus in a manner generally consistent with its tonotopic organization. 2. The FTCs of onset units differed in their minimum thresholds, the steepness of their high- and low-frequency cutoffs, and their sharpness of tuning as quantified by the quality factor at 10 dB (Q10dB) above best frequency (BF) threshold values. There was considerable overlap in the sharpness of tuning between onset units and auditory nerve fibers, as indicated by the distribution of Q10dB values in the octave around 10 kHz: onset units had Q10dB values of 3.56 +/- 1.38 (SD), compared with 6.3 +/- 2.48 for auditory nerve fibers. The tuning of chopper units was similar to that of auditory nerve fibers (5.52 +/- 1.46). 3. Seventy-five percent of onset units showed some degree of facilitation (a threshold reduction) when their FTCs were measured in the presence of BF tones 4 dB below BF threshold. The frequency extent of such facilitation was variable, with a maximum of 6 octaves around the BF. In extreme cases facilitation could be measured when the BF tone was as low as 30 dB below BF threshold. 4. In 17% of onset units, suppressive effects were evident, as shown by noncontiguous frequency regions of facilitation. These suppressive effects might be a reflection either of suppression in the auditory nerve input or of a direct inhibitory input to the onset units. The strength of this effect suggests that inhibition is a likely explanation, consistent with the finding in previous morphological studies of profuse synapses with pleomorphic vesicles on multipolar cells. 5. FTCs of chopper and primary-like units measured in the presence of BF tones showed little facilitation. The facilitation that was observed in chopper units was confined to a narrow region around BF and disappeared when the facilitatory tone was lowered to 4 dB below BF threshold. 6. These data support the hypothesis that onset units, but not chopper or primary-like units, receive excitatory inputs from auditory nerve fibers with a wide range of BFs. However, the frequency range of facilitation and the magnitude of the threshold facilitation varied from unit to unit, suggesting that the off-BF inputs from auditory nerve fibers are not evenly distributed or equally effective in all units.


1985 ◽  
Vol 54 (4) ◽  
pp. 917-939 ◽  
Author(s):  
W. P. Shofner ◽  
E. D. Young

We have studied the response properties of single units in the cochlear nucleus of unanesthetized decerebrate cats. The purpose of the study was to compare the properties of cochlear nucleus units as described in two commonly used classification schemes. Units were first classified according to their receptive-field properties based on the relative prominence of excitatory and inhibitory responses to tones and noise. Units were then classified on the basis of their discharge patterns to short tone bursts at their best frequencies (BFs). Our results show that systematic relationships exist between the receptive-field properties and discharge patterns of cochlear nucleus units. Type I units give only excitatory responses to tones and noise. They are characterized by primary-like and chopper discharge patterns. Some units in the anteroventral cochlear nucleus have prepotentials in their spike waveforms. Prepotential units most often show primary-like discharge patterns, but prepotential units characterized by nonprimary-like discharge patterns are also found. Most prepotential units lack detectable inhibitory sidebands (type I), but two of the nonprimary-like prepotential units encountered in this study had inhibitory sidebands (type III). Type III units also give excitatory responses to BF tones, but they have inhibitory sidebands. Most type III units give chopper discharge patterns, and these units can be recorded throughout the cochlear nucleus. Some type III units in the dorsal cochlear nucleus give complex discharge patterns that can be described as a composite of the pauser pattern and other patterns. The complexity of these responses seems to increase as the amount of inhibition at BF increases. Type I/III units give excitatory responses to tones and noise, but have little or no spontaneous activity so they cannot be tested directly for inhibitory responses. Type I/III units typically show chopper discharge patterns. One group of type I/III units have rate-level functions with sloping saturation, suggesting that these may receive a predominance of input from low spontaneous rate auditory nerve fibers. Type II units are nonspontaneous and give excitatory responses to tones, but give weak or no responses to noise. While type II units are homogeneous as a group in terms of their response maps. BF rate-level functions, and responses to noise, they show a variety of discharge patterns in response to short tone bursts at BF.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document