Tuned phasic and tonic motile responses of isolated outer hair cells to direct mechanical stimulation of the cell body

1994 ◽  
Vol 73 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Lou Brundin ◽  
Ian Russell
1994 ◽  
Vol 427 (1-2) ◽  
pp. 162-168 ◽  
Author(s):  
Christian Chabbert ◽  
Gwenaelle Geleoc ◽  
Jacques Lehouelleur ◽  
Alain Sans

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Aakash Basu ◽  
Samuel Lagier ◽  
Maria Vologodskaia ◽  
Brian A Fabella ◽  
AJ Hudspeth

Mechanoelectrical transduction by hair cells commences with hair-bundle deflection, which is postulated to tense filamentous tip links connected to transduction channels. Because direct mechanical stimulation of tip links has not been experimentally possible, this hypothesis has not been tested. We have engineered DNA tethers that link superparamagnetic beads to tip links and exert mechanical forces on the links when exposed to a magnetic-field gradient. By pulling directly on tip links of the bullfrog's sacculus we have evoked transduction currents from hair cells, confirming the hypothesis that tension in the tip links opens transduction channels. This demonstration of direct mechanical access to tip links additionally lays a foundation for experiments probing the mechanics of individual channels.


2016 ◽  
Author(s):  
Aakash Basu ◽  
Samuel Lagier ◽  
Maria Vologodskaia ◽  
Brian A Fabella ◽  
AJ Hudspeth

1992 ◽  
Vol 263 (5) ◽  
pp. C1088-C1095 ◽  
Author(s):  
S. Ohnishi ◽  
M. Hara ◽  
M. Inoue ◽  
T. Yamashita ◽  
T. Kumazawa ◽  
...  

Slow shortening of cochlear outer hair cells has been speculated to modify cochlear sensitivity. Tetanic electrical field stimulation of isolated outer hair cells from guinea pigs shortened the cells for 2-3 min. Electrical stimulation reduced cell length and volume (-13.5 +/- 1.5 and -37.3 +/- 3.0% of initial values, respectively, n = 16) and decreased the intracellular Cl- concentration. Cytochalasin B (100 microM) inhibited electrical stimulation-induced shortening but not volume reduction. The following chemicals or manipulations inhibited the responses: 10 microM furosemide, 0.1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 1 mM anthracene-9-carboxylic acid (AC9), 25 mM tetraethylammonium, 2.3 microM charybdotoxin (ChTX), 250 nM omega-conotoxin, and Ca(2+)-free medium. These findings suggest that both electrical stimulation-induced shortening and shrinkage of outer hair cells result not only from an actin-mediated contractile force, but also from Cl- efflux through furosemide-, DIDS-, and AC9-sensitive Cl- channels, and K+ efflux through ChTX-sensitive K+ channels.


1988 ◽  
Vol 35 (2-3) ◽  
pp. 201-207 ◽  
Author(s):  
Dennis M Freeman ◽  
Thomas F Weiss

Sign in / Sign up

Export Citation Format

Share Document