Intracellular calcium variations evoked by mechanical stimulation of mammalian isolated vestibular type I hair cells

1994 ◽  
Vol 427 (1-2) ◽  
pp. 162-168 ◽  
Author(s):  
Christian Chabbert ◽  
Gwenaelle Geleoc ◽  
Jacques Lehouelleur ◽  
Alain Sans
eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Aakash Basu ◽  
Samuel Lagier ◽  
Maria Vologodskaia ◽  
Brian A Fabella ◽  
AJ Hudspeth

Mechanoelectrical transduction by hair cells commences with hair-bundle deflection, which is postulated to tense filamentous tip links connected to transduction channels. Because direct mechanical stimulation of tip links has not been experimentally possible, this hypothesis has not been tested. We have engineered DNA tethers that link superparamagnetic beads to tip links and exert mechanical forces on the links when exposed to a magnetic-field gradient. By pulling directly on tip links of the bullfrog's sacculus we have evoked transduction currents from hair cells, confirming the hypothesis that tension in the tip links opens transduction channels. This demonstration of direct mechanical access to tip links additionally lays a foundation for experiments probing the mechanics of individual channels.


2020 ◽  
Author(s):  
Zhou Yu ◽  
J. Michael McIntosh ◽  
Soroush Sadeghi ◽  
Elisabeth Glowatzki

ABSTRACTIn the vestibular peripheral organs, type I and type II hair cells (HCs) transmit incoming signals via glutamatergic quantal transmission onto afferent nerve fibers. Additionally, type I HCs transmit via ‘non-quantal’ transmission to calyx afferent fibers, by accumulation of glutamate and potassium in the synaptic cleft. Vestibular efferent inputs originating in the brainstem contact type II HCs and vestibular afferents. Here, we aimed at characterizing the synaptic efferent inputs to type II HCs using electrical and optogenetic stimulation of efferent fibers combined with in vitro whole-cell patch clamp recording from type II HCs in the rodent vestibular crista. Properties of efferent synaptic currents in type II HCs were similar to those found in cochlear hair cells and mediated by activation of α9/α10 nicotinic acetylcholine receptors (AChRs) and SK potassium channels. While efferents showed a low probability of release at low frequencies of stimulation, repetitive stimulation resulted in facilitation and increased probability of release. Notably, the membrane potential of type II HCs measured during optogenetic stimulation of efferents showed a strong hyperpolarization even in response to single pulses and was further enhanced by repetitive stimulation. Such efferent-mediated inhibition of type II HCs can provide a mechanism to adjust the contribution of signals from type I and type II HCs to vestibular nerve fibers. As a result, the relative input of type I hair cells to vestibular afferents will be strengthened, emphasizing the phasic properties of the incoming signal that are transmitted via fast non-quantal transmission.New and NoteworthyType II vestibular hair cells (HCs) receive inputs from efferent fibers originating in the brainstem. We used in vitro optogenetic and electrical stimulation of efferent fibers to study their synaptic inputs to type II HCs. Efferent inputs inhibited type II HCs, similar to cochlear efferent effects. We propose that efferent inputs adjust the contribution of signals from type I and type II HCs that report different components of the incoming signal to vestibular nerve fibers.


2016 ◽  
Author(s):  
Aakash Basu ◽  
Samuel Lagier ◽  
Maria Vologodskaia ◽  
Brian A Fabella ◽  
AJ Hudspeth

1988 ◽  
Vol 35 (2-3) ◽  
pp. 201-207 ◽  
Author(s):  
Dennis M Freeman ◽  
Thomas F Weiss

1975 ◽  
Vol 102 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Olav Sand ◽  
Seiji Ozawa ◽  
Susumu Hagiwara

Sign in / Sign up

Export Citation Format

Share Document