Tuning, spontaneous activity and tonotopic map in chicken cochlear ganglion neurons following sound-induced hair cell loss and regeneration

1996 ◽  
Vol 98 (1-2) ◽  
pp. 152-164 ◽  
Author(s):  
Lin Chen ◽  
Patricia G. Trautwein ◽  
Marlene Shero ◽  
Richard J. Salvi
2021 ◽  
Author(s):  
Muhammad T. Rahman ◽  
Erin M. Bailey ◽  
Benjamin M. Gansemer ◽  
Andrew Pieper ◽  
J. Robert Manak ◽  
...  

AbstractSpiral ganglion neurons (SGNs) relay auditory information from cochlear hair cells to the central nervous system. After hair cells are destroyed by aminoglycoside antibiotics, SGNs gradually die. However, the reasons for this cochlear neurodegeneration are unclear. We used microarray gene expression profiling to assess transcriptomic changes in the spiral ganglia of kanamycin-deafened and age-matched control rats and found that many of the genes upregulated after deafening are associated with immune/inflammatory responses. In support of this, we observed increased numbers of macrophages in the spiral ganglion of deafened rats. We also found, via CD68 immunoreactivity, an increase in activated macrophages after deafening. An increase in CD68-associated nuclei was observed by postnatal day 23, a time before significant SGN degeneration is observed. Finally, we show that the immunosuppressive drugs dexamethasone and ibuprofen, as well as the NAD salvage pathway activator P7C3, provide at least some neuroprotection post-deafening. Ibuprofen and dexamethasone also decreased the degree of macrophage activation. These results suggest that activated macrophages specifically, and perhaps a more general neuroinflammatory response, are actively contributing to SGN degeneration after hair cell loss.


Author(s):  
Cheng Cheng ◽  
Yilin Hou ◽  
Zhonghong Zhang ◽  
Yanfei Wang ◽  
Ling Lu ◽  
...  

Neuroreport ◽  
2003 ◽  
Vol 14 (14) ◽  
pp. 1881-1884 ◽  
Author(s):  
Toshiki Maetani ◽  
Nobuhiro Hakuba ◽  
Masafumi Taniguchi ◽  
Jun Hyodo ◽  
Yoshitaka Shimizu ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0145428 ◽  
Author(s):  
Mary Ann Cheatham ◽  
Roxanne M. Edge ◽  
Kazuaki Homma ◽  
Emily L. Leserman ◽  
Peter Dallos ◽  
...  

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 927 ◽  
Author(s):  
M Charles Liberman

The classic view of sensorineural hearing loss has been that the primary damage targets are hair cells and that auditory nerve loss is typically secondary to hair cell degeneration. Recent work has challenged that view. In noise-induced hearing loss, exposures causing only reversible threshold shifts (and no hair cell loss) nevertheless cause permanent loss of >50% of the synaptic connections between hair cells and the auditory nerve. Similarly, in age-related hearing loss, degeneration of cochlear synapses precedes both hair cell loss and threshold elevation. This primary neural degeneration has remained a “hidden hearing loss” for two reasons: 1) the neuronal cell bodies survive for years despite loss of synaptic connection with hair cells, and 2) the degeneration is selective for auditory nerve fibers with high thresholds. Although not required for threshold detection when quiet, these high-threshold fibers are critical for hearing in noisy environments. Research suggests that primary neural degeneration is an important contributor to the perceptual handicap in sensorineural hearing loss, and it may be key to the generation of tinnitus and other associated perceptual anomalies. In cases where the hair cells survive, neurotrophin therapies can elicit neurite outgrowth from surviving auditory neurons and re-establishment of their peripheral synapses; thus, treatments may be on the horizon.


2009 ◽  
Vol 11 (6) ◽  
pp. 443-446
Author(s):  
R. W. T. SLACK ◽  
A. WRIGHT ◽  
L. MICHAELS ◽  
S. A. FROHLICH

1987 ◽  
Vol 96 (3) ◽  
pp. 282-285 ◽  
Author(s):  
Frans W. J. Albers ◽  
Jan E. Veldman ◽  
Egbert H. Huizing
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document