hair cell loss
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 34)

H-INDEX

37
(FIVE YEARS 3)

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 180
Author(s):  
Maria Morell ◽  
Laura Rojas ◽  
Martin Haulena ◽  
Björn Busse ◽  
Ursula Siebert ◽  
...  

Congenital hearing loss is recognized in humans and other terrestrial species. However, there is a lack of information on its prevalence or pathophysiology in pinnipeds. It is important to have baseline knowledge on marine mammal malformations in the inner ear, to differentiate between congenital and acquired abnormalities, which may be caused by infectious pathogens, age, or anthropogenic interactions, such as noise exposure. Ultrastructural evaluation of the cochlea of a neonate harbor seal (Phoca vitulina) by scanning electron microscopy revealed bilateral loss of inner hair cells with intact outer hair cells. The selective inner hair cell loss was more severe in the basal turn, where high-frequency sounds are encoded. The loss of inner hair cells started around 40% away from the apex or tip of the spiral, reaching a maximum loss of 84.6% of hair cells at 80–85% of the length from the apex. Potential etiologies and consequences are discussed. This is believed to be the first case report of selective inner hair cell loss in a marine mammal neonate, likely congenital.


Author(s):  
Yue Li ◽  
Shan Zeng ◽  
Fengjie Zhou ◽  
Huiqun Jie ◽  
Dongzhen Yu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 15 ◽  
Author(s):  
Pengcheng Xu ◽  
Longhao Wang ◽  
Hu Peng ◽  
Huihui Liu ◽  
Hongchao Liu ◽  
...  

Mutations in a number of genes encoding mitochondrial aminoacyl-tRNA synthetases lead to non-syndromic and/or syndromic sensorineural hearing loss in humans, while their cellular and physiological pathology in cochlea has rarely been investigated in vivo. In this study, we showed that histidyl-tRNA synthetase HARS2, whose deficiency is associated with Perrault syndrome 2 (PRLTS2), is robustly expressed in postnatal mouse cochlea including the outer and inner hair cells. Targeted knockout of Hars2 in mouse hair cells resulted in delayed onset (P30), rapidly progressive hearing loss similar to the PRLTS2 hearing phenotype. Significant hair cell loss was observed starting from P45 following elevated reactive oxygen species (ROS) level and activated mitochondrial apoptotic pathway. Despite of normal ribbon synapse formation, whole-cell patch clamp of the inner hair cells revealed reduced calcium influx and compromised sustained synaptic exocytosis prior to the hair cell loss at P30, consistent with the decreased supra-threshold wave I amplitudes of the auditory brainstem response. Starting from P14, increasing proportion of morphologically abnormal mitochondria was observed by transmission electron microscope, exhibiting swelling, deformation, loss of cristae and emergence of large intrinsic vacuoles that are associated with mitochondrial dysfunction. Though the mitochondrial abnormalities are more prominent in inner hair cells, it is the outer hair cells suffering more severe cell loss. Taken together, our results suggest that conditional knockout of Hars2 in mouse cochlear hair cells leads to accumulating mitochondrial dysfunction and ROS stress, triggers progressive hearing loss highlighted by hair cell synaptopathy and apoptosis, and is differentially perceived by inner and outer hair cells.


2021 ◽  
Author(s):  
Muhammad T. Rahman ◽  
Erin M. Bailey ◽  
Benjamin M. Gansemer ◽  
Andrew Pieper ◽  
J. Robert Manak ◽  
...  

AbstractSpiral ganglion neurons (SGNs) relay auditory information from cochlear hair cells to the central nervous system. After hair cells are destroyed by aminoglycoside antibiotics, SGNs gradually die. However, the reasons for this cochlear neurodegeneration are unclear. We used microarray gene expression profiling to assess transcriptomic changes in the spiral ganglia of kanamycin-deafened and age-matched control rats and found that many of the genes upregulated after deafening are associated with immune/inflammatory responses. In support of this, we observed increased numbers of macrophages in the spiral ganglion of deafened rats. We also found, via CD68 immunoreactivity, an increase in activated macrophages after deafening. An increase in CD68-associated nuclei was observed by postnatal day 23, a time before significant SGN degeneration is observed. Finally, we show that the immunosuppressive drugs dexamethasone and ibuprofen, as well as the NAD salvage pathway activator P7C3, provide at least some neuroprotection post-deafening. Ibuprofen and dexamethasone also decreased the degree of macrophage activation. These results suggest that activated macrophages specifically, and perhaps a more general neuroinflammatory response, are actively contributing to SGN degeneration after hair cell loss.


2021 ◽  
Vol 410 ◽  
pp. 108336
Author(s):  
Alberto F. Maroto ◽  
Alejandro Barrallo-Gimeno ◽  
Jordi Llorens
Keyword(s):  

2021 ◽  
Author(s):  
Amanda S Janesick ◽  
Mirko Scheibinger ◽  
Nesrine Benkafadar ◽  
Sakin Kirti ◽  
Stefan Heller

The avian hearing organ is the basilar papilla that, in sharp contrast to the mammalian cochlea, can regenerate sensory hair cells and thereby recover from complete deafness within weeks. The mechanisms that trigger, sustain, and terminate the regenerative response in vivo are largely unknown. Here, we profile the changes in gene expression in the chicken basilar papilla after aminoglycoside antibiotic-induced hair cell loss using RNA-sequencing. The most prominent changes in gene expression were linked to the upregulation of interferon response genes which occurred in supporting cells, confirmed by single-cell RNA-sequencing and in situ hybridization. We determined that the JAK/STAT signaling pathway is essential for the interferon gene response in supporting cells, set in motion by hair cell loss. Four days after ototoxic damage, we identified newly regenerated, nascent auditory hair cells that express genes linked to termination of the interferon response. These cells are incipient modified neurons that represent a population of hair cells en route towards obtaining their location-specific and fully functional cell identity. The robust, transient expression of immune-related genes in supporting cells suggests a potential functional involvement of JAK/STAT signaling and interferon in sensory hair cell regeneration.


2021 ◽  
Vol 13 ◽  
Author(s):  
Barbara Peixoto Pinheiro ◽  
Youssef Adel ◽  
Marlies Knipper ◽  
Marcus Müller ◽  
Hubert Löwenheim

Age-related hearing loss (ARHL) is the most common sensory deficit in aging society, which is accompanied by increased speech discrimination difficulties in noisy environments, social isolation, and cognitive decline. The audiometric degree of ARHL is largely correlated with sensory hair cell loss in addition to age-related factors not captured by histopathological analysis of the human cochlea. Previous studies have identified the senescence-accelerated mouse prone strain 8 (SAMP8) as a model for studying ARHL and age-related modifications of the cochlear redox environment. However, the SAMP8 population exhibits a large variability in auditory function decline over age, whose underlying cause remains unknown. In this study, we analyzed auditory function of SAMP8 mice by measuring auditory brainstem response (ABR) thresholds at the age of 6 weeks (juvenile), 12 weeks (young adult), and 24 weeks (adult). Consistent with previous studies, SAMP8 mice exhibit an early progressive, age-related decline of hearing acuity. However, a spatiotemporal cytohistological analysis showed that the significant increase in threshold variability was not concurrently reflected in outer hair cell (OHC) loss observed in the lower and upper quartiles of the ABR threshold distributions over age. This functional loss was found to precede OHC loss suggesting that age-related phenotypic changes may be contributing factors not represented in cytohistological analysis. The expression of potassium channels KCNQ4 (KV7.4), which mediates the current IK,n crucial for the maintenance of OHC membrane potential, and KCNQ1 (KV7.1), which is an essential component in potassium circulation and secretion into the endolymph generating the endocochlear potential, showed differences between these quartiles and age groups. This suggests that phenotypic changes in OHCs or the stria vascularis due to variable oxidative deficiencies in individual mice may be predictors of the observed threshold variability in SAMP8 mice and their progressive ARHL. In future studies, further phenotypic predictors affected by accumulated metabolic challenges over age need to be investigated as potentially underlying causes of ARHL preceding irreversible OHC loss in the SAMP8 mouse model.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Huanyu Mao ◽  
Yan Chen

Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.


2021 ◽  
Author(s):  
Moataz Dowaidar

Neurotrophin (NT) cochlear gene therapy might perhaps give a single treatment that might greatly enhance neuronal survival, resulting in CI patients, provided the many challenges described above can be adequately addressed and safety concerns allayed by more animal model investigations. This is particularly crucial for juvenile CI patients, who have to rely on electrical hearing for the remainder of their lives, and whose outcomes are quite different. In addition, NT gene therapy may have the potential to treat patients with noise-induced hearing loss or neural presbyacusis (e.g., age-related cochlear synaptopathy), where primary neuronal loss is a key cause of hearing loss. Animal research into noise-induced hearing loss has shown that even exposures that generate only reversible threshold alterations and no hair cell loss can lead to permanent loss of SGN synapses on hair cells, resulting in functional impairments and ultimately SGN degeneration. Cochlear synapses frequently precede both hair cell loss and threshold increases in human ears, according to current studies. Cochlear synaptopathy is characterized by ears with intact hair cell populations and normal audiograms as "hidden" hearing loss. Many frequent perceptual abnormalities, including speech-in-noise difficulties, tinnitus, and hyperacusis, are likely produced by suppressing affected neurons, which radically alters information processing. Thus, in the future, NT gene therapy may be successful in inducing SGN peripheral axon resprouting and synaptic regeneration into residual (or even regenerated) hair cell populations. We have demonstrated compelling evidence that, in this investigation, BDNF gene therapy can boost SGN survival and enhance peripheral axon maintenance or rerouting. NT-3 has been found in adult animals exposed to acoustic damage to induce synaptic regeneration of these fibers, reconnecting them to hair cells and their ribbon synapses, and restoring hearing function. Combining BDNF and NT-3 gene therapy may be the most effective way to maintain/restore a more normal cochlear neuronal substrate.


Sign in / Sign up

Export Citation Format

Share Document