duality symmetry
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 18)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Machiko Hatsuda ◽  
Warren Siegel

Abstract The exceptional symmetry is realized perturbatively in F-theory which is the manifest U-duality theory. The SO(5) U-duality symmetry acts on both the 16 space-time coordinates and the 10 worldvolume coordinates. Closure of the Virasoro algebra requires the Gauss law constraints on the worldvolume. This set of current algebras describes a F-theory 10-brane. The SO(5) duality symmetry is enlarged to the SO(6) symmetry in the Lagrangian formulation. We propose actions of the F-theory 10-brane with SO(5) and SO(6) symmetries. The gauge fields of the latter action are coset elements of SO(6)/SO(6; ℂ) which include both the SO(5)/SO(5; ℂ) spacetime backgrounds and the worldvolume backgrounds. The SO(5) current algebra obtained from the Pasti-Sorokin-Tonin M5-brane Lagrangian leads to the theory behind M-theory, namely F-theory. We also propose an action of the perturbative M-theory 5-brane obtained by sectioning the worldvolume of the F-theory 10-brane.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Sergei Alexandrov ◽  
Ashoke Sen ◽  
Bogdan Stefański

Abstract Type IIA string theory compactified on a Calabi-Yau threefold has a hypermultiplet moduli space whose metric is known to receive non-perturbative corrections from Euclidean D2-branes wrapped on 3-cycles. These corrections have been computed earlier by making use of mirror symmetry, S-duality and twistorial description of quaternionic geometries. In this paper we compute the leading corrections in each homology class using a direct world-sheet approach without relying on any duality symmetry or supersymmetry. Our results are in perfect agreement with the earlier predictions.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1368
Author(s):  
David L. Andrews

Optical vortices are beams of laser light with screw symmetry in their wavefront. With a corresponding azimuthal dependence in optical phase, they convey orbital angular momentum, and their methods of production and applications have become one of the most rapidly accelerating areas in optical physics and technology. It has been established that the quantum nature of electromagnetic radiation extends to properties conveyed by each individual photon in such beams. It is therefore of interest to identify and characterize the symmetry aspects of the quantized fields of vortex radiation that relate to the beam and become manifest in its interactions with matter. Chirality is a prominent example of one such aspect; many other facets also invite attention. Fundamental CPT symmetry is satisfied throughout the field of optics, and it plays significantly into manifestations of chirality where spatial parity is broken; duality symmetry between electric and magnetic fields is also involved in the detailed representation. From more specific considerations of spatial inversion, amongst which it emerges that the topological charge has the character of a pseudoscalar, other elements of spatial symmetry, beyond simple parity inversion, prove to repay additional scrutiny. A photon-based perspective on these features enables regard to be given to the salient quantum operators, paying heed to quantum uncertainty limits of observables. The analysis supports a persistence in features of significance for the material interactions of vortex beams, which may indicate further scope for suitably tailored experimental design.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Eric Lescano ◽  
Carmen A. Núñez ◽  
Jesús A. Rodríguez

Abstract Higher-derivative interactions and transformation rules of the fields in the effective field theories of the massless string states are strongly constrained by space-time symmetries and dualities. Here we use an exact formulation of ten dimensional $$ \mathcal{N} $$ N = 1 supergravity coupled to Yang-Mills with manifest T-duality symmetry to construct the first order α′-corrections of the heterotic string effective action. The theory contains a supersymmetric and T-duality covariant generalization of the Green-Schwarz mechanism that determines the modifications to the leading order supersymmetry transformation rules of the fields. We compute the resulting field-dependent deformations of the coefficients in the supersymmetry algebra and construct the invariant action, with up to and including four-derivative terms of all the massless bosonic and fermionic fields of the heterotic string spectrum.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Massimo Giovannini

AbstractThe production of the hypermagnetic gyrotropy is investigated under the assumption that the gauge coupling smoothly evolves during a quasi-de Sitter phase and then flattens out in the radiation epoch by always remaining perturbative. In the plane defined by the strength of the anomalous interactions and by the rate of evolution of the gauge coupling the actual weight of the pseudoscalar interactions turns out to be always rather modest if major deviations from the homogeneity are to be avoided during the inflationary phase. Even if the gauge power spectra are related by duality only in the absence of anomalous contributions, an approximate duality symmetry constrains the late-time form of the hypermagnetic power spectra. Since the hypermagnetic gyrotropy associated with the modes reentering prior to the phase transition must be released into fermions later on, the portions of the parameter space where the obtained baryon asymmetry is close to the observed value are the most relevant for the present ends. For the same range of parameters the magnetic power spectra associated with the modes reentering after symmetry breaking may even be of the order of a few hundredths of a nG over typical length scales comparable with the Mpc prior to the collapse of the protogalaxy.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Stanislav Hronek ◽  
Linus Wulff

Abstract Double Field Theory (DFT) is an attempt to make the O(d, d) T-duality symmetry of string theory manifest, already before reducing on a d-torus. It is known that supergravity can be formulated in an O(D, D) covariant way, and remarkably this remains true to the first order in α′. We set up a systematic way to analyze O(D, D) invariants, working order by order in fields, which we carry out up to order α′3. At order α′ we recover the known Riemann squared invariant, while at order α′2 we find no independent invariant. This is compatible with the α′ expansion in string theory. However, at order α′3 we show that there is again no O(D, D) invariant, in contradiction to the fact that all string theories have quartic Riemann terms with coefficient proportional to ζ (3). We conclude that DFT and similar frameworks cannot capture the full α′ expansion in string theory.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamed Ismail Abdelrahman ◽  
Evgeniia Slivina ◽  
Carsten Rockstuhl ◽  
Ivan Fernandez-Corbaton

AbstractSystems with a discrete rotational symmetry $$2\pi /n$$ 2 π / n where $$n\ge 3$$ n ≥ 3 that also have electromagnetic duality symmetry exhibit zero backscattering. The impact of breaking one of the two symmetries on the emerging backscattering has not yet been systematically studied. Here, we investigate the effect that perturbatively breaking each of the two symmetries has on the backscattering off individual objects and 2D arrays. We find that the backscattering off electromagnetically-small prisms increases with the parameters that determine the symmetry breaking, and that the increase of the backscattering due to the progressive breaking of one of the symmetries can be related to the other symmetry. Further exploration of the interplay between the two symmetries reveals that, in systems lacking enough rotational symmetry, the backscattering can be almost-entirely suppressed for a given linear polarization by deliberately breaking the duality symmetry. This duality breaking can be interpreted as an effective increase of the electromagnetic degree of rotational symmetry for that linear polarization.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Fabian Fischbach ◽  
Albrecht Klemm ◽  
Christoph Nega

Abstract Motivated by recent advances in Donaldson-Thomas theory, four-dimensional $$ \mathcal{N} $$ N = 4 string-string duality is examined in a reduced rank theory on a less studied BPS sector. In particular we identify candidate partition functions of “untwisted” quarter-BPS dyons in the heterotic ℤ2 CHL model by studying the associated chiral genus two partition function, based on the M-theory lift of string webs argument by Dabholkar and Gaiotto. This yields meromorphic Siegel modular forms for the Iwahori subgroup B(2) ⊂ Sp4(ℤ) which generate BPS indices for dyons with untwisted sector electric charge, in contrast to twisted sector dyons counted by a multiplicative lift of twisted-twining elliptic genera known from Mathieu moonshine. The new partition functions are shown to satisfy the expected constraints coming from wall-crossing and S-duality symmetry as well as the black hole entropy based on the Gauss-Bonnet term in the effective action. In these aspects our analysis confirms and extends work of Banerjee, Sen and Srivastava, which only addressed a subset of the untwisted sector dyons considered here. Our results are also compared with recently conjectured formulae of Bryan and Oberdieck for the partition functions of primitive DT invariants of the CHL orbifold X = (K3 × T2)/ℤ2, as suggested by string duality with type IIA theory on X.


Sign in / Sign up

Export Citation Format

Share Document