Cell-to-cell fusion of lens fiber cellsin situ: Correlative light, scanning electron microscopic, and freeze-fracture studies

1985 ◽  
Vol 93 (3) ◽  
pp. 144-160 ◽  
Author(s):  
J.R. Kuszak ◽  
M.S. Macsai ◽  
K.J. Bloom ◽  
J.L. Rae ◽  
R.S. Weinstein
HortScience ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 99-103 ◽  
Author(s):  
Hirofumi Terai ◽  
Alley E. Watada ◽  
Charles A. Murphy ◽  
William P. Wergin

Structural changes in chloroplasts of broccoli (Brassica oleracea L., Italica group) florets during senescence were examined using light microscopy, scanning electron microscopy (SEM) with freeze-fracture technique, and transmission electron microscopy (TEM) to better understand the process of chloroplast degradation, particularly at the advanced stage of senescence. Light microscopy revealed that chloroplasts, which initially were intact and green, became obscure in shape, and their color faded during senescence. Small, colored particles appeared in cells as the florets approached the final stage of senescence and became full- to dark-yellow in color. Scanning electron microscopy showed that stroma thylakoids in the chloroplast initially were parallel to each other and grana thylakoids were tightly stacked. As senescence advanced, the grana thylakoids degenerated and formed globules. The globules became larger by aggregation as senescence progressed, and the large globules, called “thylakoid plexus,” formed numerous vesicles. The vesicles ultimately were expelled into the cytosol, and the light microscope revealed many colored particles in the senescent cells. These results indicate that the degradation of chloroplasts in broccoli florets progresses systematically, with the final product being colored particles, which are visible in yellow broccoli sepal cells.


Author(s):  
Toichiro Kuwabara

Although scanning electron microscopy has a great potential in biological application, there are certain limitations in visualization of the biological structure. Satisfactory techniques to demonstrate natural surfaces of the tissue and the cell have been reported by several investigators. However, it is commonly found that the surface cell membrane is covered with a minute amount of mucin, secretory substance or tissue fluid as physiological, pathological or artefactual condition. These substances give a false surface appearance, especially when the tissue is fixed with strong fixatives. It seems important to remove these coating substances from the surface of the cell for demonstration of the true structure.


Author(s):  
T. Kanetaka ◽  
M. Cho ◽  
S. Kawamura ◽  
T. Sado ◽  
K. Hara

The authors have investigated the dissolution process of human cholesterol gallstones using a scanning electron microscope(SEM). This study was carried out by comparing control gallstones incubated in beagle bile with gallstones obtained from patients who were treated with chenodeoxycholic acid(CDCA).The cholesterol gallstones for this study were obtained from 14 patients. Three control patients were treated without CDCA and eleven patients were treated with CDCA 300-600 mg/day for periods ranging from four to twenty five months. It was confirmed through chemical analysis that these gallstones contained more than 80% cholesterol in both the outer surface and the core.The specimen were obtained from the outer surface and the core of the gallstones. Each specimen was attached to alminum sheet and coated with carbon to 100Å thickness. The SEM observation was made by Hitachi S-550 with 20 kV acceleration voltage and with 60-20, 000X magnification.


Author(s):  
Loren Anderson ◽  
Pat Pizzo ◽  
Glen Haydon

Transmission electron microscopy of replicas has long been used to study the fracture surfaces of components which fail in service. Recently, the scanning electron microscope (SEM) has gained popularity because it allows direct examination of the fracture surface. However, the somewhat lower resolution of the SEM coupled with a restriction on the sample size has served to limit the use of this instrument in investigating in-service failures. It is the intent of this paper to show that scanning electron microscopic examination of conventional negative replicas can be a convenient and reliable technique for determining mode of failure.


Sign in / Sign up

Export Citation Format

Share Document