scholarly journals Online computation of exterior orientation with application to hand-eye calibration

1996 ◽  
Vol 24 (5-6) ◽  
pp. 121-143 ◽  
Author(s):  
C.-P. Lu ◽  
E. Mjolsness ◽  
G.D. Hager
Author(s):  
Tong Liu ◽  
Yameng Zhang ◽  
Yanmin Zhu ◽  
Weiqin Tong ◽  
Weiqin Tong ◽  
...  

2019 ◽  
pp. 579-595 ◽  
Author(s):  
Hadi Aliakbarpour ◽  
Kannappan Palaniappan ◽  
Guna Seetharaman
Keyword(s):  

2011 ◽  
Vol 130-134 ◽  
pp. 103-107 ◽  
Author(s):  
Zheng Yu Zhang ◽  
Shui Liang Wang ◽  
Yan Sun

It is crucial measuring position and attitude of model to gain the precise and accurate data in wind tunnel tests. The model displacement videogrammetric measurement (MDVM) system and its key techniques such as the exterior orientation with big rotation angles and large-overlap, mark points, image processing and calibration based on the known distances are therefore presented. The practice example in Asia's largest (2.4m) transonic wind tunnel has demonstrated the MDVM system and its key techniques are correct and feasible, and they have application value.


Author(s):  
A. Berveglieri ◽  
A. M. G. Tommaselli ◽  
E. Honkavaara

Hyperspectral camera operating in sequential acquisition mode produces spectral bands that are not recorded at the same instant, thus having different exterior orientation parameters (EOPs) for each band. The study presents experiments on bundle adjustment with time-dependent polynomial models for band orientation of hyperspectral cubes sequentially collected. The technique was applied to a Rikola camera model. The purpose was to investigate the behaviour of the estimated polynomial parameters and the feasibility of using a minimum of bands to estimate EOPs. Simulated and real data were produced for the analysis of parameters and accuracy in ground points. The tests considered conventional bundle adjustment and the polynomial models. The results showed that both techniques were comparable, indicating that the time-dependent polynomial model can be used to estimate the EOPs of all spectral bands, without requiring a bundle adjustment of each band. The accuracy of the block adjustment was analysed based on the discrepancy obtained from checkpoints. The root mean square error (RMSE) indicated an accuracy of 1 GSD in planimetry and 1.5 GSD in altimetry, when using a minimum of four bands per cube.


Sign in / Sign up

Export Citation Format

Share Document