Itaconic acid fermentation with modeled beet thick juice and molasses by Aspergillus terreus K26

1992 ◽  
Vol 74 (6) ◽  
pp. 416 ◽  
Author(s):  
Mitsutoshi Nakagawa
2021 ◽  
Vol 12 ◽  
Author(s):  
Erzsébet Sándor ◽  
István S. Kolláth ◽  
Erzsébet Fekete ◽  
Vivien Bíró ◽  
Michel Flipphi ◽  
...  

The effects of the interplay of copper(II) and manganese(II) ions on growth, morphology and itaconic acid formation was investigated in a high-producing strain of Aspergillus terreus (NRRL1960), using carbon sources metabolized either mainly via glycolysis (D-glucose, D-fructose) or primarily via the pentose phosphate shunt (D-xylose, L-arabinose). Limiting Mn2+ concentration in the culture broth is indispensable to obtain high itaconic acid yields, while in the presence of higher Mn2+ concentrations yield decreases and biomass formation is favored. However, this low yield in the presence of high Mn2+ ion concentrations can be mitigated by increasing the Cu2+ concentration in the medium when D-glucose or D-fructose is the growth substrate, whereas this effect was at best modest during growth on D-xylose or L-arabinose. A. terreus displays a high tolerance to Cu2+ which decreased when Mn2+ availability became increasingly limiting. Under such conditions biomass formation on D-glucose or D-fructose could be sustained at concentrations up to 250 mg L–1 Cu2+, while on D-xylose- or L-arabinose biomass formation was completely inhibited at 100 mg L–1. High (>75%) specific molar itaconic acid yields always coincided with an “overflow-associated” morphology, characterized by small compact pellets (<250 μm diameter) and short chains of “yeast-like” cells that exhibit increased diameters relative to the elongated cells in growing filamentous hyphae. At low concentrations (≤1 mg L–1) of Cu2+ ions, manganese deficiency did not prevent filamentous growth. Mycelial- and cellular morphology progressively transformed into the typical overflow-associated one when external Cu2+ concentrations increased, irrespective of the available Mn2+. Our results indicate that copper ions are relevant for overflow metabolism and should be considered when optimizing itaconic acid fermentation in A. terreus.


Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 31 ◽  
Author(s):  
Péter Komáromy ◽  
Péter Bakonyi ◽  
Adrienn Kucska ◽  
Gábor Tóth ◽  
László Gubicza ◽  
...  

Biological itaconic acid production can by catalyzed by Aspergillus terreus (a filamentous fungi) where the fermentation medium pH is of prominent importance. Therefore, in this work, we investigated what benefits the different pH regulation options might offer in enhancing the process. The batch itaconic acid fermentation data underwent a kinetic analysis and the pH control alternatives were ranked subsequently. It would appear that the pH-shift strategy (initial adjustment of pH to 3 and its maintenance at 2.5 after 48 h) resulted in the most attractive fermentation pattern and could hence be recommended to achieve itaconic acid production with an improved performance using A. terreus from carbohydrate, such as glucose. Under this condition, the itaconic acid titer potential, the maximal itaconic acid (titer) production rate, the length of lag-phase and itaconic acid yield were 87.32 g/L, 0.22 g/L/h, 56.04 h and 0.35 g/g glucose, respectively.


1957 ◽  
Vol 226 (2) ◽  
pp. 689-701
Author(s):  
Ronald Bentley ◽  
Clara P. Thiessen

Author(s):  
J. Becker ◽  
H. Hosseinpour Tehrani ◽  
P. Ernst ◽  
L. M. Blank ◽  
N. Wierckx

Ustilago maydis, member of the Ustilaginaceae family, is a promising host for the production of several metabolites including itaconic acid. This dicarboxylate has great potential as a bio-based building block in the polymer industry, and is of special interest for pharmaceutical applications. Several itaconate overproducing Ustilago strains have been generated by metabolic and morphology engineering. This yielded stabilized unicellular morphology through fuz7 deletion, reduction of by-product formation through deletion of genes responsible for itaconate oxidation and (glyco)lipid production, and the overexpression of the regulator of the itaconate cluster ria1 and the mitochondrial tricarboxylate transporter encoded by mttA from Aspergillus terreus. In this study, itaconate production was further optimized by consolidating these different optimizations into one strain. The combined modifications resulted in itaconic acid production at theoretical maximal yield, which was achieved under biotechnologically relevant fed-batch fermentations with continuous feed.


Sign in / Sign up

Export Citation Format

Share Document