scholarly journals Carbon-Source Dependent Interplay of Copper and Manganese Ions Modulates the Morphology and Itaconic Acid Production in Aspergillus terreus

2021 ◽  
Vol 12 ◽  
Author(s):  
Erzsébet Sándor ◽  
István S. Kolláth ◽  
Erzsébet Fekete ◽  
Vivien Bíró ◽  
Michel Flipphi ◽  
...  

The effects of the interplay of copper(II) and manganese(II) ions on growth, morphology and itaconic acid formation was investigated in a high-producing strain of Aspergillus terreus (NRRL1960), using carbon sources metabolized either mainly via glycolysis (D-glucose, D-fructose) or primarily via the pentose phosphate shunt (D-xylose, L-arabinose). Limiting Mn2+ concentration in the culture broth is indispensable to obtain high itaconic acid yields, while in the presence of higher Mn2+ concentrations yield decreases and biomass formation is favored. However, this low yield in the presence of high Mn2+ ion concentrations can be mitigated by increasing the Cu2+ concentration in the medium when D-glucose or D-fructose is the growth substrate, whereas this effect was at best modest during growth on D-xylose or L-arabinose. A. terreus displays a high tolerance to Cu2+ which decreased when Mn2+ availability became increasingly limiting. Under such conditions biomass formation on D-glucose or D-fructose could be sustained at concentrations up to 250 mg L–1 Cu2+, while on D-xylose- or L-arabinose biomass formation was completely inhibited at 100 mg L–1. High (>75%) specific molar itaconic acid yields always coincided with an “overflow-associated” morphology, characterized by small compact pellets (<250 μm diameter) and short chains of “yeast-like” cells that exhibit increased diameters relative to the elongated cells in growing filamentous hyphae. At low concentrations (≤1 mg L–1) of Cu2+ ions, manganese deficiency did not prevent filamentous growth. Mycelial- and cellular morphology progressively transformed into the typical overflow-associated one when external Cu2+ concentrations increased, irrespective of the available Mn2+. Our results indicate that copper ions are relevant for overflow metabolism and should be considered when optimizing itaconic acid fermentation in A. terreus.

Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 31 ◽  
Author(s):  
Péter Komáromy ◽  
Péter Bakonyi ◽  
Adrienn Kucska ◽  
Gábor Tóth ◽  
László Gubicza ◽  
...  

Biological itaconic acid production can by catalyzed by Aspergillus terreus (a filamentous fungi) where the fermentation medium pH is of prominent importance. Therefore, in this work, we investigated what benefits the different pH regulation options might offer in enhancing the process. The batch itaconic acid fermentation data underwent a kinetic analysis and the pH control alternatives were ranked subsequently. It would appear that the pH-shift strategy (initial adjustment of pH to 3 and its maintenance at 2.5 after 48 h) resulted in the most attractive fermentation pattern and could hence be recommended to achieve itaconic acid production with an improved performance using A. terreus from carbohydrate, such as glucose. Under this condition, the itaconic acid titer potential, the maximal itaconic acid (titer) production rate, the length of lag-phase and itaconic acid yield were 87.32 g/L, 0.22 g/L/h, 56.04 h and 0.35 g/g glucose, respectively.


1957 ◽  
Vol 226 (2) ◽  
pp. 689-701
Author(s):  
Ronald Bentley ◽  
Clara P. Thiessen

2006 ◽  
Vol 188 (2) ◽  
pp. 556-568 ◽  
Author(s):  
Biju Joseph ◽  
Karin Przybilla ◽  
Claudia Stühler ◽  
Kristina Schauer ◽  
Jörg Slaghuis ◽  
...  

ABSTRACT A successful transition of Listeria monocytogenes from the extracellular to the intracellular environment requires a precise adaptation response to conditions encountered in the host milieu. Although many key steps in the intracellular lifestyle of this gram-positive pathogen are well characterized, our knowledge about the factors required for cytosolic proliferation is still rather limited. We used DNA microarray and real-time reverse transcriptase PCR analyses to investigate the transcriptional profile of intracellular L. monocytogenes following epithelial cell infection. Approximately 19% of the genes were differentially expressed by at least 1.6-fold relative to their level of transcription when grown in brain heart infusion medium, including genes encoding transporter proteins essential for the uptake of carbon and nitrogen sources, factors involved in anabolic pathways, stress proteins, transcriptional regulators, and proteins of unknown function. To validate the biological relevance of the intracellular gene expression profile, a random mutant library of L. monocytogenes was constructed by insertion-duplication mutagenesis and screened for intracellular-growth-deficient strains. By interfacing the results of both approaches, we provide evidence that L. monocytogenes can use alternative carbon sources like phosphorylated glucose and glycerol and nitrogen sources like ethanolamine during replication in epithelial cells and that the pentose phosphate cycle, but not glycolysis, is the predominant pathway of sugar metabolism in the host environment. Additionally, we show that the synthesis of arginine, isoleucine, leucine, and valine, as well as a species-specific phosphoenolpyruvate-dependent phosphotransferase system, play a major role in the intracellular growth of L. monocytogenes.


2011 ◽  
Vol 61 (11) ◽  
pp. 2626-2631 ◽  
Author(s):  
K. S. Inglett ◽  
H. S. Bae ◽  
H. C. Aldrich ◽  
K. Hatfield ◽  
A. V. Ogram

A Cr(VI)-resistant, Gram-positive, spore-forming, obligate anaerobe, designated GCAF-1T, was isolated from chromium-contaminated soil by its ability to reduce Cr(VI) in low concentrations. Mixed acid fermentation during growth on glucose resulted in accumulation of acetate, butyrate, formate and lactate. Morphological studies indicated the presence of peritrichous flagella, pili and an S-layer. The major cellular fatty acids (>5 %) were C16 : 0, C14 : 0, summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c), C18 : 1ω7c, C16 : 1ω9c, summed feature 4 (comprising iso-C17 : 1 I and/or anteiso-C17 : 1 B) and C18 : 1ω9c. The DNA G+C content of strain GCAF-1T was 30.7 mol%. Phylogenetic interference indicated that strain GCAF-1T clustered with group I of the genus Clostridium. Of strains within this cluster, strain GCAF-1T shared the highest 16S rRNA gene sequence similarities (98.1–98.9 %) with Clostridium beijerinckii DSM 791T, C. saccharobutylicum NCP 262T, C. saccharoperbutylacetonicum N1-4T, C. puniceum DSM 2619T and C. roseum DSM 51T. However, strain GCAF-1T could be clearly distinguished from its closest phylogenetic neighbours by low levels of DNA–DNA relatedness (<50 %) and some phenotypic features. Based on the evidence presented here, strain GCAF-1T ( = DSM 23318T  = KCTC 5935T) represents a novel species of the genus Clostridium, for which the name Clostridium chromiireducens sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document