Acquired immunity in insects: The recognition of nonself and the subsequent onset of immune protein genes

1990 ◽  
Vol 141 (8) ◽  
pp. 927-932 ◽  
Author(s):  
I. Faye
2010 ◽  
Vol 34 (8) ◽  
pp. S72-S72
Author(s):  
Qi Xu ◽  
Xiumin Ma ◽  
Yuejie Zhu ◽  
Fengsen Li ◽  
Jianbing Ding

2009 ◽  
Vol 22 (2) ◽  
pp. 370-385 ◽  
Author(s):  
Jenefer M. Blackwell ◽  
Sarra E. Jamieson ◽  
David Burgner

SUMMARY Following their discovery in the early 1970s, classical human leukocyte antigen (HLA) loci have been the prototypical candidates for genetic susceptibility to infectious disease. Indeed, the original hypothesis for the extreme variability observed at HLA loci (H-2 in mice) was the major selective pressure from infectious diseases. Now that both the human genome and the molecular basis of innate and acquired immunity are understood in greater detail, do the classical HLA loci still stand out as major genes that determine susceptibility to infectious disease? This review looks afresh at the evidence supporting a role for classical HLA loci in susceptibility to infectious disease, examines the limitations of data reported to date, and discusses current advances in methodology and technology that will potentially lead to greater understanding of their role in infectious diseases in the future.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katerina Zabrady ◽  
Matej Zabrady ◽  
Peter Kolesar ◽  
Arthur W. H. Li ◽  
Aidan J. Doherty

AbstractCRISPR-Cas pathways provide prokaryotes with acquired “immunity” against foreign genetic elements, including phages and plasmids. Although many of the proteins associated with CRISPR-Cas mechanisms are characterized, some requisite enzymes remain elusive. Genetic studies have implicated host DNA polymerases in some CRISPR-Cas systems but CRISPR-specific replicases have not yet been discovered. We have identified and characterised a family of CRISPR-Associated Primase-Polymerases (CAPPs) in a range of prokaryotes that are operonically associated with Cas1 and Cas2. CAPPs belong to the Primase-Polymerase (Prim-Pol) superfamily of replicases that operate in various DNA repair and replication pathways that maintain genome stability. Here, we characterise the DNA synthesis activities of bacterial CAPP homologues from Type IIIA and IIIB CRISPR-Cas systems and establish that they possess a range of replicase activities including DNA priming, polymerisation and strand-displacement. We demonstrate that CAPPs operonically-associated partners, Cas1 and Cas2, form a complex that possesses spacer integration activity. We show that CAPPs physically associate with the Cas proteins to form bespoke CRISPR-Cas complexes. Finally, we propose how CAPPs activities, in conjunction with their partners, may function to undertake key roles in CRISPR-Cas adaptation.


Sign in / Sign up

Export Citation Format

Share Document