The application of an open queueing network to the analysis of cycle time, variability, throughput, inventory and cost in the batch production system of a microelectronics manufacturer

1994 ◽  
Vol 37 (2-3) ◽  
pp. 189-203 ◽  
Author(s):  
Krysia Lynes ◽  
John Miltenburg
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jagan Mohan Reddy K. ◽  
Neelakanteswara Rao A. ◽  
Krishnanand Lanka ◽  
PRC Gopal

Purpose Pull production systems have received much attention in the supply chain management environment. The number of Kanbans is a key decision variable in the pull production system as it affects the finished goods inventory (FGI) and backorders of the system. The purpose of this study is to compare the performance of the fixed and dynamic Kanban systems in terms of operational metrics (FGI and backorders) under the demand uncertainty. Design/methodology/approach In this paper, the system dynamics (SD) approach was used to model the performance of fixed and dynamic Kanban based production systems. SD approach has enabled the feedback mechanism and is an appropriate tool to incorporate the dynamic control during the simulation. Initially, a simple Kanban based production system was developed and then compared the performance of production systems with fixed and dynamic controlled Kanbans at the various demand scenarios. Findings From the present study, it is observed that the dynamic Kanban system has advantages over the fixed Kanban system and also observed that the variation in the backorders with respect to the demand uncertainty under the dynamic Kanban system is negligible. Research limitations/implications In a just-in-time production system, the number of Kanbans is a key decision variable. The number of Kanbans is mainly depended on the demand, cycle time, safety stock factor (SSF) and container size. However, this study considered only demand uncertainty to compare the fixed and dynamic Kanban systems. This paper further recommends researchers to consider other control variables which may influence the number of Kanbans such as cycle time, SSF and container size. Originality/value This study will be useful to decision-makers and production managers in the selection of the Kanban systems in uncertain demand applications.


2019 ◽  
Vol 25 (2) ◽  
pp. 236-252 ◽  
Author(s):  
Lin Wang ◽  
Zhiqiang Lu ◽  
Xiaole Han

Purpose This paper integrates condition-based maintenance (CBM) with production planning in a single-stage production system that deteriorates with usage during a specified finite planning horizon. The purpose of this paper is to develop an integrated production and maintenance model to minimize the expected total cost over the horizon. Design/methodology/approach A joint production planning and CBM model is proposed. In the model, a set of products must be produced in lots. The system degradation is a stationary gamma process and the degradation level is detected by inspection between production lots. Maintenance actions including imperfect preventive maintenance (PM) should be taken when the failure risk exceeds the maintenance threshold. A fix-iterative heuristic algorithm is proposed to address the joint model. Findings The proactive policy expressed as a prognosis maintenance threshold is introduced to integrate CBM with batch production perfectly. Experiments are carried out to conduct sensitivity analysis, which provides some insights to facilitate industrial manufacturing. The superiority of the proposed joint model compared with a separate decision method is demonstrated. The results show an advantage in cost saving. Originality/value Few studies have been made to integrate production planning and CBM decisions, especially for a multi-product system. Their maintenance decisions are usually based on a periodic review policy, which is not appropriate for batch production system. A prognosis maintenance threshold based on system condition and production quantity is suitable for the integrated decisions. Moreover, the imperfect PM is taken into consideration in this paper. A fix-iterative algorithm is developed to solve the joint model. This work forms a proactive maintenance for batch production.


Author(s):  
Konstantinos N. Genikomsakis ◽  
◽  
Vassilios D. Tourassis

Assembly Line Balancing (ALB) aims at optimally assigning the work elements required to assemble a product to an ordered sequence of workstations, while satisfying precedence constraints. Notwithstanding the advances and developments in ALB over the years, recent and thorough surveys on this field reveal that only a small percentage of companies employ ALB procedures to configure their assembly lines. This paradox may be attributed, to some extent, to the fact that ALB is addressed mostly under ideal conditions. Despite the time variability inherent in manufacturing tasks, there is a strong research trend towards designing and implementing algorithms that consider ALB on a deterministic basis and focus on the optimality of the proposed task assignments according to existing ALB performance measures. In this paper, the need to assess the performance of the proposed solutions of various algorithms in the literature is corroborated through simulation experiments on a benchmark ALB problem under more realistic conditions. A novel ALB index, namely the Effective Cycle Time, ECT, is proposed to assess the quality of alternative assembly line configurations in paced assembly lines operating under task times variations.


Sign in / Sign up

Export Citation Format

Share Document