Movement-related potentials associated with motor inhibition as determined by use of a stop signal paradigm in humans

1994 ◽  
Vol 2 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Eiichi Naito ◽  
Michikazu Matsumura
Author(s):  
Martina Montalti ◽  
Marta Calbi ◽  
Valentina Cuccio ◽  
Maria Alessandra Umiltà ◽  
Vittorio Gallese

AbstractIn the last decades, the embodied approach to cognition and language gained momentum in the scientific debate, leading to evidence in different aspects of language processing. However, while the bodily grounding of concrete concepts seems to be relatively not controversial, abstract aspects, like the negation logical operator, are still today one of the main challenges for this research paradigm. In this framework, the present study has a twofold aim: (1) to assess whether mechanisms for motor inhibition underpin the processing of sentential negation, thus, providing evidence for a bodily grounding of this logic operator, (2) to determine whether the Stop-Signal Task, which has been used to investigate motor inhibition, could represent a good tool to explore this issue. Twenty-three participants were recruited in this experiment. Ten hand-action-related sentences, both in affirmative and negative polarity, were presented on a screen. Participants were instructed to respond as quickly and accurately as possible to the direction of the Go Stimulus (an arrow) and to withhold their response when they heard a sound following the arrow. This paradigm allows estimating the Stop Signal Reaction Time (SSRT), a covert reaction time underlying the inhibitory process. Our results show that the SSRT measured after reading negative sentences are longer than after reading affirmative ones, highlighting the recruitment of inhibitory mechanisms while processing negative sentences. Furthermore, our methodological considerations suggest that the Stop-Signal Task is a good paradigm to assess motor inhibition’s role in the processing of sentence negation.


Author(s):  
Graciela C. Alatorre-Cruz ◽  
Heather Downs ◽  
Darcy Hagood ◽  
Seth T. Sorensen ◽  
D. Keith Williams ◽  
...  

2013 ◽  
Vol 4 ◽  
Author(s):  
Joaquin A. Anguera ◽  
Kyle Lyman ◽  
Theodore P. Zanto ◽  
Jacob Bollinger ◽  
Adam Gazzaley

2020 ◽  
Author(s):  
Inge Leunissen ◽  
Manon Van Steenkiste ◽  
Kirstin Heise ◽  
Thiago Santos Monteiro ◽  
Kyle Dunovan ◽  
...  

Voluntary movements are accompanied by an increase in gamma-band oscillatory activity (60-100Hz) and a strong desynchronization of beta-band activity (13-30Hz) in the motor system at both the cortical and subcortical level. Conversely, successful motor inhibition is associated with increased beta power in a fronto-basal-ganglia network. Intriguingly, gamma activity also increases in response to a stop-signal. In this study, we used transcranial alternating current stimulation to drive beta and gamma oscillations to investigate whether these frequencies are causally related to motor inhibition. We found that 20Hz stimulation targeted at the pre-supplementary motor area enhanced inhibition and increased beta oscillatory activity around the time of the stop-signal in trials directly following stimulation. In contrast, 70Hz stimulation seemed to slow down the braking process, and predominantly affected go task performance. These results demonstrate that the effects of tACS are state-dependent and that especially fronto-central beta activity is a functional marker for successful motor inhibition.


Author(s):  
Lin Chi ◽  
Chiao-Ling Hung ◽  
Chi-Yen Lin ◽  
Tai-Fen Song ◽  
Chien-Heng Chu ◽  
...  

Obesity and cardiorespiratory fitness exhibit negative and positive impacts, respectively, on executive function. Nevertheless, the combined effects of these two factors on executive function remain unclear. This study investigated the combined effects of obesity and cardiorespiratory fitness on response inhibition of executive function from both behavioral and neuroelectric perspectives. Ninety-six young adults aged between 18 and 25 years were recruited and assigned into four groups: the high cardiorespiratory fitness with normal weight (NH), high cardiorespiratory fitness with obesity (OH), low cardiorespiratory fitness with normal weight (NL), and low cardiorespiratory fitness with obesity (OL) groups. The stop-signal task and its induced P3 component of event-related potentials was utilized to index response inhibition. The participants with higher cardiorespiratory fitness (i.e., the NH and OH groups) demonstrated better behavioral performance (i.e., shorter response times and higher accuracy levels), as well as shorter stop-signal response times and larger P3 amplitudes than their counterparts with low cardiorespiratory fitness (i.e., the NL and OL groups). The study provides first-hand evidence of the substantial effects of cardiorespiratory fitness on the response inhibition, including evidence that the detrimental effects of obesity might be overcome by high cardiorespiratory fitness.


Sign in / Sign up

Export Citation Format

Share Document