Dynamical path-planning algorithm of a mobile robot: Local minima problem and nonstationary environments

Mechatronics ◽  
1996 ◽  
Vol 6 (1) ◽  
pp. 81-100 ◽  
Author(s):  
Changkyu Choi ◽  
Ju-Jang Lee
2015 ◽  
Vol 5 (3) ◽  
pp. 189-203 ◽  
Author(s):  
Tharindu Weerakoon ◽  
Kazuo Ishii ◽  
Amir Ali Forough Nassiraei

Abstract Artificial Potential Filed (APF) is the most well-known method that is used in mobile robot path planning, however, the shortcoming is that the local minima. To overcome this issue, we present a deadlock free APF based path planning algorithm for mobile robot navigation. The Proposed-APF (P-APF) algorithm searches the goal point in unknown 2D environments. This method is capable of escaping from deadlock and non-reachability problems of mobile robot navigation. In this method, the effective front-face obstacle information associated with the velocity direction is used to modify the Traditional APF (T-APF) algorithm. This modification solves the deadlock problem that the T-APF algorithm often converges to local minima. The proposed algorithm is explained in details and to show the effectiveness of the proposed approach, the simulation experiments were carried out in the MATLAB environment. Furthermore, the numerical analysis of the proposed approach is given to prove a deadlock free motion of the mobile robot.


Author(s):  
Dayal R. Parhi ◽  
Animesh Chhotray

PurposeThis paper aims to generate an obstacle free real time optimal path in a cluttered environment for a two-wheeled mobile robot (TWMR).Design/methodology/approachThis TWMR resembles an inverted pendulum having an intermediate body mounted on a robotic mobile platform with two wheels driven by two DC motors separately. In this article, a novel motion planning strategy named as DAYANI arc contour intelligent technique has been proposed for navigation of the two-wheeled self-balancing robot in a global environment populated by obstacles. The developed new path planning algorithm evaluates the best next feasible point of motion considering five weight functions from an arc contour depending upon five separate navigational parameters.FindingsAuthenticity of the proposed navigational algorithm has been demonstrated by computing the path length and time taken through a series of simulations and experimental verifications and the average percentage of error is found to be about 6%.Practical implicationsThis robot dynamically stabilizes itself with taller configuration, can spin on the spot and rove along through obstacles with smaller footprints. This diversifies its areas of application to both indoor and outdoor environments especially with very narrow spaces, sharp turns and inclined surfaces where its multi-wheel counterparts feel difficult to perform.Originality/valueA new obstacle avoidance and path planning algorithm through incremental step advancement by evaluating the best next feasible point of motion has been established and verified through both experiment and simulation.


Sign in / Sign up

Export Citation Format

Share Document