Design and application of a digital radiographic weld inspection system

1991 ◽  
Vol 24 (4) ◽  
pp. 214
2017 ◽  
Vol 33 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Fernando Roca Barceló ◽  
Pedro Jaén del Hierro ◽  
Fran Ribes Llario ◽  
Julia Real Herráiz

2021 ◽  
Author(s):  
Haibin Jia

Laser scanning, a widely used technology, has been highly developed and adopted in various industrial applications. The methodologies used for scanner date processing are mostly point based. In this thesis, a new approach is presented to analyze spatial data obtained from a 3-D laser scanner for shape error inspection. Different from traditional methodologies, the method proposed in this research is frequency based. The method utilizes the Fourier transform to decompose a 2-D curve or 3-D shape into its spatial components by applying two 1-D FFT (Fast Fourier Transform) on 2-D curves or two 2-D FFT on 3-D shapes. The spatial components including frequency, amplitude, and phase are defined as shape characteristics to represent the shape under inspection. By relating spatial components with GD&T (Geometric Dimensioning and Tolerancing) standards using proper analysis techniques, such as frequency spectrum and cross correlation, shape errors can be detected and characterized. One of the applications of this method is automated inspection. In this research, the spatial data method is applied to MIG (Metal Inert Gas) weld inspection. Experiments are carried out to analyze the 2-D curve of a projection weld data, and the 3-D scanning data directly. A MIG weld inspection system is also developed for production use.


Author(s):  
Jonathan Bowman ◽  
Hugh Thompson ◽  
Donald Stevens ◽  
James Crane

The fatigue loading on deepwater risers results in the need to impose very tight weld acceptance criteria for pipe alignment and flaw sizes. The production of high-pressure, high-temperature reservoirs calls for increasingly thick-walled riser systems. The combination of thicker wall pipe and the maintenance of tight flaw acceptance criteria challenges automated ultrasonic testing (AUT) which is the primary method of riser weld inspection. An understanding of the limitations of the weld inspection system must be determined and accommodated as part of the engineering process and in conjunction with adequate knowledge of the pipe end dimensions can help optimize the inspection process. This paper discusses the challenges associated with the preparation for and inspection of thick-walled riser system welds and the impact this can have on the system design and engineering requirement. In support of the discussion an overview of a recent study to determine the detect-ability and sizing accuracy of an AUT system with thick-wall pipe girth welds is presented. The qualification program is based upon the AUT inspection of seeded defect welds which are subsequently cut into weld rings, re-inspected with an immersion scan and sectioned to determine the size of the flaws present. All AUT inspections are performed under similar conditions to the inspection of the production welds (i.e., no prior knowledge of the nature of the seeded welds).


Sign in / Sign up

Export Citation Format

Share Document