Software for thermo-elastic stress analysis

1992 ◽  
Vol 25 (4-5) ◽  
pp. 244
1981 ◽  
Vol 103 (1) ◽  
pp. 107-111
Author(s):  
D. P. Updike

Elastic stress analysis of a right angle tee branch pipe connection of two pipes of identical diameter and thickness connected through 45-deg chamfer corner sections is developed for internal pressure loading. Stresses in the crotch portion of the vessel are determined. These results are presented in the form of a table of factors useful for rapid calculation of approximate values of the peak stresses. The existence of a structurally optimum size of chamfer is demonstrated.


2013 ◽  
Vol 325-326 ◽  
pp. 22-27 ◽  
Author(s):  
Ali Ozturk ◽  
Mufit Gulgec

In this theoretical study, based on Trescas yield criterion and its associated flow rule, the elastic deformation of a centrally heated compound cylinder with fixed ends is investigated analytically by taking into consideration not only the geometrical but also the material parameters such as yield strength, modulus of elasticity, Poissons ratio, thermal conductivity and coefficient of thermal expansion. These material parameters are assumed to be independent of the temperature. The compound cylinder is assumed to be very long such that axisymmetric condition exists. Both of the constituent materials of the two layers are supposed to be elastic-perfectly plastic materials. There is heat generation in the interior solid cylinder but no heat generation in the outer hollow cylinder. Both of the cylinders are assumed to be bounded perfectly at the interface. Elastic stress analysis is performed to prevent yield in the compound cylinder. Keywords: Compound cylinder, elastic stress analysis, thermal stress, yield strength.


Author(s):  
S. Pothana ◽  
G. Wilkowski ◽  
S. Kalyanam ◽  
Y. Hioe ◽  
G. Hattery ◽  
...  

In flaw evaluation criteria, the secondary stresses (displacement controlled) may have different design limits than primary stresses (load-controlled stress components). The design limits are based on elastic stress analysis. Traditionally the elastic design stresses are used in the flaw evaluation procedures. But realistically a flaw in the piping system can cause non-linear behavior due to the plasticity at the crack plane as well as in the adjacent uncracked-piping material. A Secondary Stress Weighting Factor (SSWF) was established which is the ratio of elastic-plastic moment to the elastic moment calculated through an elastic stress analysis. As long as the remote uncracked pipe stresses are below yield, the SSWF is 1.0, and if the uncracked pipe plastic stresses are above the yield stress, the SSWF reaches a limit which is called the Plastic Reduction Factor (PRF). Four-point-bend tests were conducted on pipes with varying circumferential surface-crack lengths and depths. The moment-rotation plots obtained from various pipe tests were used in the determination of PRF. A lower-bound limiting PRF can be calculated from a tensile test, but pipe systems are not uniformly loaded like a tensile specimen. The actual PRF value for a cracked pipe was shown to have a lower bound, which occurs when the test section of interest is at a uniform stress (such as the center region in a four-point pipe bend tests). When multiple plastic hinges develop in a pipe system (a “balanced system” by ASME Section III NB-3650 design rules), this gives a greater reduction to the elastically calculated stresses since there is more plasticity. It was found that the plastic reduction is less when most parts of the pipe system remains elastic, or if the crack is located in the high strength/ lower toughness pipe or welds, or if the pipe size is large enough that elastic-plastic conditions occur even for a higher toughness material. Interestingly, it was shown that the same system with different loading directions could exhibit different actual PRF values if the change in the loading direction changes how much of the pipe system experiences plastic stresses. For smaller cracks, where the bending moments are high, the actual PRF is controlled by plasticity of the uncracked pipe, which is much larger than the plasticity that occurs locally at the crack. However, for large cracks where the bending moments are lower (closer to design conditions), the plasticity at the crack is equally important to the smaller amount of plasticity in the uncracked pipe for the actual PRF. Hence the plasticity of both the uncracked pipe and at the cracked sections is important to include in the determination of actual PRF values.


1994 ◽  
Vol 13 (1) ◽  
pp. 35-43 ◽  
Author(s):  
C.Y. Cha ◽  
S. Vaidyanathan ◽  
A. Adamski ◽  
W. Bozek ◽  
J. Trevelyan

Sign in / Sign up

Export Citation Format

Share Document