Volume 6B: Materials and Fabrication
Latest Publications


TOTAL DOCUMENTS

73
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791858004

Author(s):  
Daichi Tsurumi ◽  
Hiroyuki Saito ◽  
Hirokazu Tsuji

As an alternative method to slow strain rate technique (SSRT) under high-pressure hydrogen gas evaluation, SSRT was performed with a cathodically charged specimen. Cr-Mo low alloy steel with a tensile strength of 1000 MPa grade was selected as a test material. Cathodic charging was performed in 3% NaCl solution and at a current density in the range of 50–600 A/m2. The effect of specimen size on the hydrogen embrittlement properties was evaluated. Relative reduction of area (RRA) values obtained by tests at a cathode current density of 400 A/m2 were equivalent to those performed in hydrogen gas at pressures of 10 to 35 MPa. Fracture surface observations were also performed using scanning electron microscopy (SEM). The quasi-cleavage fracture surface was observed only after rupture of small specimens that were subjected to hydrogen charged tests. It was also necessary for the diameter of the specimen to be small to form the quasi-cleavage fracture surface. The results indicated that to simulate the high-pressure hydrogen gas test, a specimen with a smaller parallel section diameter that is continuously charged until rupture is preferable.


Author(s):  
Jian Chen ◽  
Jonathan Tatman ◽  
Zongyao Chen ◽  
Zhili Feng ◽  
Greg Frederick

Substantial research has been performed in recent years to determine the effects and feasibility of welding on highly irradiated austenitic materials. This research has been driven by the need to preemptively develop welding techniques capable of repairing highly irradiated light water reactor (LWR) components susceptible to detrimental corrosion and cracking. However, the materials used to fabricate internal LWR components become increasingly difficult to weld with in-service age due to irradiation-induced generation of helium in the material matrix over time. This paper introduces a patent-pending technology that proactively manages the stresses during laser repair welding of highly irradiated reactor internals to avoid the occurrence of intergranular helium-induced cracking. The technology development relied on numerical simulations that made it possible to refine and optimize the innovative welding concept and to identify specific process conditions achieving significant reduction of tensile stress (or even formation of compressive stress) near the weld pool in the heat-affected zone on cooling. The candidate welding process conditions identified by the numerical simulations were experimentally tested on stainless steel plates (Type 304L) with a laser welding system purposely designed and engineered to incorporate the proactive stress management concept. In-situ temperature and strain measurement technique based on digital image correlation were applied to validate the numerical simulations.


Author(s):  
Yoru Wada ◽  
Yusuke Yanagisawa

Autofrettage is used to known as an effective method to prevent fatigue crack propagation of thick-walled cylinder vessels operating under high pressure. Since low-alloy steel shows an enhanced crack growth rate in high-pressure gaseous hydrogen, this paper aims to validate the effect of autofrettage on crack growth behavior in high-pressure gaseous hydrogen utilizing 4%NiCrMoV steel (SA723 Gr3 Class2). An autofrettaged cylindrical specimen with a 70mm inside diameter and 111mm outside diameter was prepared with an axial EDM (depth of 1mm) notched on the inside surface. The measured residual stress profile coincides well with the calculated results. The fatigue crack growth test was conducted by pressurizing the cylinder and varying the external water pressure. Crack propagation from the EDM notch was observed in the non-autofrettaged cylindrical specimen while no crack propagation was observed when the initial EDM notch size was within the compressive residual stress field. When the initial EDM notch size was increased, the fatigue crack growth showed a narrow, groove-like fracture surface for the autofrettaged specimen. In order to qualitatively analyze those results, fatigue crack growth rates were examined under various load ratios including a negative load ratio using a fracture mechanics specimen. From the information obtained, crack growth analysis of an autofrettaged cylinder in a high-pressure hydrogen environment was successfully demonstrated with a fracture mechanics approach.


Author(s):  
Joe T. Carter ◽  
Robert H. Jones

An overview of containers for commercial SNF is provided. The presentation covers the current fleet of canisters, and their attributes, storage and transportation overpacks.


Author(s):  
Sergio Cicero ◽  
Francisco Ibáñez ◽  
Isabela Procopio ◽  
Virginia Madrazo

This paper presents the application of the Strain Energy Density (SED) criterion to the estimation of fracture loads on structural steel S355J2 operating at lower shelf temperatures (−196°C) and containing U-shaped notches. 24 fracture tests were performed on this material, combining 6 different notch radii: 0 mm (crack-like defect), 0.15 mm, 0.25 mm, 0.50 mm, 1.0 mm and 2.0 mm. The results obtained in cracked specimens (0 mm notch radius) were used to determine the material fracture toughness, which is an input parameter in the SED criterion, whereas the notched specimens were used to demonstrate the capacity and the limitations of the SED criterion to provide fracture load estimations in the analyzed conditions.


Author(s):  
Bai An ◽  
Zhengli Hua ◽  
Takashi Iijima ◽  
Chaohua Gu ◽  
Jinyang Zheng ◽  
...  

Detecting hydrogen distribution at micro- and nano-scale is important for understanding the mechanisms of hydrogen embrittlement in metals. In this study, scanning Kelvin probe force microscopy (SKPFM), which can detect the variation of surface contact potential difference (CPD) caused by hydrogen, is applied to investigate the hydrogen distribution and evolution in thermally hydrogen-charged (HC) super duplex stainless steel. The SKPFM observations reveal that the CPD distribution becomes nonuniform in both the ferrite and austenite phases after hydrogen charging, implying that hydrogen distributes heterogeneously in the two phases. The average CPDs of both the ferrite and austenite phases are significantly decreased and the difference of CPD between two phases reaches a maximum shortly after thermal hydrogen-charging. The average CPDs of both the ferrite and austenite phases recover and the difference of CPD between two phases is decreased upon release of the hydrogen. These results are discussed in terms of the hydrogen outgasing behavior and the difference of hydrogen diffusivity in the two phases.


Author(s):  
Gang Zheng ◽  
Sayeed Hossain ◽  
Feng Shen ◽  
Chris Truman

The aim of the present study was to utilize a complex residual stress generated within a welded circular disc to further investigate the standard deep-hole drilling (DHD) technique and the newly developed over-coring deep-hole drilling (oDHD) technique in accurately measuring residual stresses well over yield stress. Finite Element Analysis (FEA) was used to optimize and extend the deep-hole drilling technique and improve its accuracy. The standard DHD procedure involves 4 steps. (1) A reference hole is gun-drilled through the component. (2) The internal diameter of the reference hole is measured at different angular positions through the depth of the component. (3) A cylindrical section with the reference hole as its longitudinal axis is trepanned free from the component. (4) Finally, the relaxed internal diameter is re-measured at the same angular positions and the same depths. The drilling, trepanning procedures and the parameters of the deep-hole drilling technique were all studied in detail to optimize the technique. Comparison is made between the FEA predicted residual stress in the weld, the measurements and the reconstructed residual stresses of the measurements. The close correlations confirmed the suitability of new modifications made in the deep-hole drilling technique to account for plasticity when measuring near yield residual stresses present in a component.


Author(s):  
Thomas M. Musto ◽  
Glenn R. Frazee ◽  
Michael P. H. Marohl

In the design of piping systems, there are many options for transitioning between HDPE and metallic piping. One common option is the use of flanged joints. As a result of the visco-elastic nature of HDPE, the use of HDPE-to-metallic flanged joints requires special design considerations. When HDPE-to-metallic flanged joints are used in ASME Class 3 systems, the design is further complicated by the requirements provided in the ASME B&PV Code, Section III for flanged joint analysis. This paper examines the differences between HDPE piping flanged joints and metallic piping flanged joints, including consideration of industry guidance and available industry testing results. The paper provides a proposed methodology for evaluating ASME Class 3 HDPE-to-metallic flanged joints and HDPE-to-HDPE flanged joints, including the determination of required bolt torque values and the determination of the maximum internal pressure that the joint can resist without experiencing leakage.


Author(s):  
S. Pothana ◽  
G. Wilkowski ◽  
S. Kalyanam ◽  
Y. Hioe ◽  
G. Hattery ◽  
...  

In flaw evaluation criteria, the secondary stresses (displacement controlled) may have different design limits than primary stresses (load-controlled stress components). The design limits are based on elastic stress analysis. Traditionally the elastic design stresses are used in the flaw evaluation procedures. But realistically a flaw in the piping system can cause non-linear behavior due to the plasticity at the crack plane as well as in the adjacent uncracked-piping material. A Secondary Stress Weighting Factor (SSWF) was established which is the ratio of elastic-plastic moment to the elastic moment calculated through an elastic stress analysis. As long as the remote uncracked pipe stresses are below yield, the SSWF is 1.0, and if the uncracked pipe plastic stresses are above the yield stress, the SSWF reaches a limit which is called the Plastic Reduction Factor (PRF). Four-point-bend tests were conducted on pipes with varying circumferential surface-crack lengths and depths. The moment-rotation plots obtained from various pipe tests were used in the determination of PRF. A lower-bound limiting PRF can be calculated from a tensile test, but pipe systems are not uniformly loaded like a tensile specimen. The actual PRF value for a cracked pipe was shown to have a lower bound, which occurs when the test section of interest is at a uniform stress (such as the center region in a four-point pipe bend tests). When multiple plastic hinges develop in a pipe system (a “balanced system” by ASME Section III NB-3650 design rules), this gives a greater reduction to the elastically calculated stresses since there is more plasticity. It was found that the plastic reduction is less when most parts of the pipe system remains elastic, or if the crack is located in the high strength/ lower toughness pipe or welds, or if the pipe size is large enough that elastic-plastic conditions occur even for a higher toughness material. Interestingly, it was shown that the same system with different loading directions could exhibit different actual PRF values if the change in the loading direction changes how much of the pipe system experiences plastic stresses. For smaller cracks, where the bending moments are high, the actual PRF is controlled by plasticity of the uncracked pipe, which is much larger than the plasticity that occurs locally at the crack. However, for large cracks where the bending moments are lower (closer to design conditions), the plasticity at the crack is equally important to the smaller amount of plasticity in the uncracked pipe for the actual PRF. Hence the plasticity of both the uncracked pipe and at the cracked sections is important to include in the determination of actual PRF values.


Sign in / Sign up

Export Citation Format

Share Document