Structure and function of plasma Proteins, Volume 2

1977 ◽  
Vol 2 (7) ◽  
pp. 166-167
Author(s):  
Hugh Gordon
Metallomics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1036-1043 ◽  
Author(s):  
Monica J. Jacobs ◽  
Cody W. Pinger ◽  
Andre D. Castiaux ◽  
Konnor J. Maloney ◽  
Dana M. Spence

Plasma proteins are covalently modified in vivo by the high-glucose conditions in the bloodstreams of people with diabetes, resulting in changes to both structure and function.


2013 ◽  
Vol 109 (03) ◽  
pp. 421-430 ◽  
Author(s):  
Trang Vu ◽  
James Fredenburgh ◽  
Jeffrey Weitz

SummaryThere is mounting evidence that zinc, the second most abundant transition metal in blood, is an important mediator of haemostasis and thrombosis. Prompted by the observation that zinc deficiency is associated with bleeding and clotting abnormalities, there now is evidence that zinc serves as an effector of coagulation, anticoagulation and fibrinolysis. Zinc binds numerous plasma proteins and modulates their structure and function. Because activated platelets secrete zinc into the local microenvironment, the concentration of zinc increases in the vicinity of a thrombus. Consequently, the role of zinc varies depending on the microenvironment; a feature that endows zinc with the capacity to spatially and temporally regulate haemostasis and thrombosis. This paper reviews the mechanisms by which zinc regulates coagulation, platelet aggregation, anticoagulation and fibrinolysis and outlines how zinc serves as a ubiquitous modulator of haemostasis and thrombosis.


1992 ◽  
Vol 36 (1) ◽  
pp. 33-38
Author(s):  
Nobuhiro Takahashi ◽  
Frank W. Putnam

Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Sign in / Sign up

Export Citation Format

Share Document