A review of Cenozoic evolution of the southeastern United States Atlantic coast north of the Georgia trough

1995 ◽  
Vol 26 ◽  
pp. 35-41 ◽  
Author(s):  
Donald J. Colquhoun
1986 ◽  
Vol 51 (1) ◽  
pp. 21-37 ◽  
Author(s):  
Cheryl Claassen

Shellfish seasonality studies are summarized in this article, which presents the results of analysis at 94 sites in nine southeastern states. All but six of the sites are middens or shell lenses composed of marine or brackish water species (M. mercenaria, R. cuneata, D. variabilis). Shells in those sites along the Atlantic coast were collected from fall to early spring, while shells in sites on the Gulf coast were collected during early spring to summer. Freshwater shellfish middens in four states have been investigated and consistently indicated collection during warm weather. The uniformity of the results indicates that the variation in species used, techniques used, sample sizes, or geography have no noticeable negative impact on the usefulness of the results. It is argued that shellfish were a staple in the diet of many prehistoric horticultural peoples in spite of the fact that they are a dietary supplement for modern hunters and collectors.


Fishes ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 44
Author(s):  
Michael L. Burton ◽  
Jennifer C. Potts ◽  
Andrew D. Ostrowski

Ages of margate, Haemulon album (n = 415) and black margate, Anisotremus surinamensis (n = 130) were determined using sectioned sagittal otoliths collected from the Southeastern United States Atlantic coast from 1979 to 2017. Opaque zones were annular, forming between January and June for both species, with peaks in occurrence of otoliths with opaque margins in April for margate and March for black margate. The observed ages for margate were 0–22 years, and the largest fish measured 807 mm TL (total length). Black margate ranged in age from 3 to 17 years, and the largest fish was 641 mm TL. Weight–length relationships were: margate, ln(W) = 2.88 ln(TL) − 10.44 (n = 1327, r2 = 0.97, MSE = 0.02), where W is total weight (grams, g); black margate, ln(W) = 3.02 ln(TL) − 11.10 (n = 451, r2 = 0.95, MSE = 0.01). Von Bertalanffy growth equations were Lt = 731 (1 − e−0.23(t+0.38)) for margate, and Lt = 544 (1 − e−0.13(t+2.61)) for black margate. After re-estimating black margate growth using a bias-correction procedure to account for the lack of younger fish, growth was described by the equation Lt = 523 (1 − e−0.18(t+0.0001)). Age-invariant estimates of natural mortality were M = 0.19 y−1 and M = 0.23 y−1 for margate and black margate, respectively, while age-varying estimates of M ranged from 2.93 −0.23 y−1 for fish aged 0–22 for margate and 7.20 − 0.19 y−1 for fish aged 0–18 for black margate. This study presents the first documentation of life-history parameters for margate from the Atlantic waters off the Southeastern United States, and the first published estimate of black margate life history parameters from any geographic region.


Fishes ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 36 ◽  
Author(s):  
Michael L. Burton ◽  
Jennifer C. Potts ◽  
Andrew D. Ostrowski ◽  
Kyle W. Shertzer

Graysby (Cephalophilis cruentata) (n = 1308) collected from the southeastern United States Atlantic coast from 2001 to 2016 were aged using sectioned sagittal otoliths. Opaque zones formed February to June (peaking in April). Ages ranged from 2 to 21 years, and the largest fish measured 453 mm TL. Growth morph analysis revealed two regionally distinct growth trajectories: von Bertalanffy growth equations were Lt = 388 (1 − e−0.12(t+5.73)) for fish from North Carolina through southeast Florida (northern region), and Lt = 267 (1 − e−0.17(t+6.20)) for fish from the Florida Keys (southern region). When growth was re-estimated using a fixed t0 value of −0.75 to estimate for smaller fish, growth equations were Lt = 349 (1 − e−0.26(t+0.75)) and Lt = 250 (1 − e−0.43(t+0.75)) for fish from the northern and southern regions, respectively. The age-invariant estimate of natural mortality was M = 0.30 for all fish, while age-specific estimates ranged 0.88–0.28 y−1 for fish aged 1–21 from the northern region and 0.89–0.47 y−1 for fish aged 1–15 from the southern region. This study presents the first comprehensive analysis of life-history parameters for graysby from the Atlantic waters off the southeastern United States, including specimens from both recreational and commercial fisheries.


2005 ◽  
pp. 72-122 ◽  
Author(s):  
LEONARD A. SMOCK ◽  
ANNE B. WRIGHT ◽  
ARTHUR C. BENKE

2013 ◽  
Vol 26 (21) ◽  
pp. 8440-8452 ◽  
Author(s):  
Justin T. Maxwell ◽  
Jason T. Ortegren ◽  
Paul A. Knapp ◽  
Peter T. Soulé

Abstract Precipitation from land-falling tropical cyclones (TCs) has a significant hydroclimatic influence in the southeastern United States, particularly during drought years. The frequency with which TCs ended drought conditions was examined for southeastern coastal states from Texas to North Carolina during 1895–2011. The region was divided into the Gulf Coast states (GCS) and the southeastern Atlantic coast states (ACS). The spatiotemporal patterns of tropical cyclone drought busters (TCDBs) were analyzed. Larger-scale ocean–atmosphere influences on TCDBs were examined using chi-squared analysis. The ACS experienced TCDBs more frequently and farther inland compared to the GCS. The number of TCDBs has significantly increased with time in the ACS. TCDBs numbers in the GCS did not exhibit significant increases, but the area alleviated of drought conditions increased significantly in the last 117 years. The dominant larger-scale ocean–atmosphere forcing of TCDBs was a combination of a warm Atlantic Ocean [positive Atlantic multidecadal oscillation index (AMO+)] and weak westerlies [negative North Atlantic Oscillation index (NAO−)]. AMO+ leads to an increase in the number of TCs throughout the North Atlantic basin, and NAO− increases the likelihood of TC landfall by controlling the steering of TCs toward the southeastern United States.


2011 ◽  
Vol 140 (2) ◽  
pp. 384-398 ◽  
Author(s):  
Gabriel L. Ziskin ◽  
Patrick J. Harris ◽  
David M. Wyanski ◽  
Marcel J. M. Reichert

Sign in / Sign up

Export Citation Format

Share Document