Requirements for central and peripheral adrenergic input in the induction of histidine decarboxylase synthesis by interleukin-3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) in hemopoetic progenitor cells

Cytokine ◽  
1989 ◽  
Vol 1 (1) ◽  
pp. 133
1999 ◽  
Vol 17 (4) ◽  
pp. 1296-1296 ◽  
Author(s):  
Alberto Ballestrero ◽  
Fabio Ferrando ◽  
Anna Garuti ◽  
Palma Basta ◽  
Roberta Gonella ◽  
...  

PURPOSE: To compare the toxicity and effects on hematologic recovery and circulating progenitor cell mobilization of three cytokine regimens administered after high-dose cyclophosphamide (HD-CTX; 6 g/m2), given as the first step of a high-dose sequential chemotherapy. PATIENTS AND METHODS: Forty-eight patients with breast cancer or non-Hodgkin's lymphoma were randomized to receive granulocyte colony-stimulating factor (G-CSF) alone (arm 1), granulocyte-macrophage colony-stimulating factor (GM-CSF) alone (arm 2), or sequential interleukin-3 (IL-3) and GM-CSF (arm 3). Cytokines were administered as a single daily subcutaneous injection at a dose of 5 to 6 μg/kg/d. Progenitor cells were evaluated in peripheral blood as well as in apheretic product as both CD34+ cells and granulocyte-macrophage colony-forming units (CFU-GM). RESULTS: Neutrophil recovery was faster in arm 1 as compared with arms 2 and 3 (P < .0001); no significant differences were observed between arms 2 and 3. In arm 3, a moderate acceleration of platelet recovery was observed, but it was statistically significant only as compared with arm 1 (P = .028). The peak of CD34+ cells was hastened in a median of 2 days in arm 1 compared with arms 2 and 3 (P = .0002), whereas the median peak value of CD34+ cells and CFU-GM was similar in the three patient groups. Administration of IL-3 and GM-CSF resulted in more significant toxicity requiring pharmacologic treatment in 90% of patients. CONCLUSION: The three cytokine regimens administered after HD-CTX are comparably effective in reducing hematologic toxicity and mobilizing the hematopoietic progenitor cells. G-CSF accelerates leukocyte recovery and progenitor mobilization. Although G-CSF–treated patients have somewhat slower platelet recovery, they definitely have fewer side effects.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 191-195 ◽  
Author(s):  
IK McNiece ◽  
BE Robinson ◽  
PJ Quesenberry

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF) has previously been shown to stimulate granulocyte, macrophage, and megakaryocyte lineages to act as an erythroid burst-promoting activity and to stimulate limited replication of spleen colony-forming cells. Here we demonstrate that murine GM-CSF alone or in combination with macrophage colony-stimulating factor (CSF-1) can stimulate colony- forming cells in bone marrow (BM) that have a high proliferative capacity. In cultures of BM from mice treated with 5-fluorouracil (FU) eight days before sampling, GM-CSF alone or in combination with CSF-1 stimulated the formation of large macrophage colonies with diameters greater than 0.5 mm. CSF-1 alone, at 800 units or greater, also stimulated larger colonies; however, these colonies were always less than 1.1 mm in diameter, whereas GM-CSF in combination with CSF-1 stimulated many colonies with diameters between 1 and 4 mm. At all doses of CSF-1 tested, the combination of factors resulted in a synergistic increase in colonies with diameters greater than 1.0 or 2.0 mm. Analysis of the incidence of colony-forming cells in the BM of normal mice and mice 2, 4, 6, and 8 days after FU treatment demonstrated that the progenitor cells stimulated by GM-CSF alone or in combination with CSF-1 were depleted by FU treatment in vivo and regenerated more rapidly than did the macrophage progenitors (M-CFC) stimulated by CSF-1 alone. This is similar to the properties of the previously described high-proliferative potential, colony-forming cell (HPP-CFC) that is responsive to interleukin-3 plus CSF-1 but not the HPP-CFC stimulated by hematopoietin 1 plus CSF-1. These data suggest that GM-CSF plus CSF-1 act synergistically to stimulate a population of progenitor cells that have a high proliferative potential and have properties similar to those of the population of HPP-CFC stimulated by interleukin-3 plus CSF-1.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 191-195 ◽  
Author(s):  
IK McNiece ◽  
BE Robinson ◽  
PJ Quesenberry

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has previously been shown to stimulate granulocyte, macrophage, and megakaryocyte lineages to act as an erythroid burst-promoting activity and to stimulate limited replication of spleen colony-forming cells. Here we demonstrate that murine GM-CSF alone or in combination with macrophage colony-stimulating factor (CSF-1) can stimulate colony- forming cells in bone marrow (BM) that have a high proliferative capacity. In cultures of BM from mice treated with 5-fluorouracil (FU) eight days before sampling, GM-CSF alone or in combination with CSF-1 stimulated the formation of large macrophage colonies with diameters greater than 0.5 mm. CSF-1 alone, at 800 units or greater, also stimulated larger colonies; however, these colonies were always less than 1.1 mm in diameter, whereas GM-CSF in combination with CSF-1 stimulated many colonies with diameters between 1 and 4 mm. At all doses of CSF-1 tested, the combination of factors resulted in a synergistic increase in colonies with diameters greater than 1.0 or 2.0 mm. Analysis of the incidence of colony-forming cells in the BM of normal mice and mice 2, 4, 6, and 8 days after FU treatment demonstrated that the progenitor cells stimulated by GM-CSF alone or in combination with CSF-1 were depleted by FU treatment in vivo and regenerated more rapidly than did the macrophage progenitors (M-CFC) stimulated by CSF-1 alone. This is similar to the properties of the previously described high-proliferative potential, colony-forming cell (HPP-CFC) that is responsive to interleukin-3 plus CSF-1 but not the HPP-CFC stimulated by hematopoietin 1 plus CSF-1. These data suggest that GM-CSF plus CSF-1 act synergistically to stimulate a population of progenitor cells that have a high proliferative potential and have properties similar to those of the population of HPP-CFC stimulated by interleukin-3 plus CSF-1.


Blood ◽  
1989 ◽  
Vol 74 (8) ◽  
pp. 2652-2656 ◽  
Author(s):  
T Gesner ◽  
RA Mufson ◽  
KJ Turner ◽  
SC Clark

Abstract Granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) each bind specifically to a small number of high- affinity receptors present on the surface of the cells of the acute myelogenous leukemia line, KG-1. Through chemical cross-linking of IL-3 and GM-CSF to KG-1 cells, we identified distinct binding proteins for each of these cytokines with approximate molecular masses of 69 and 93 Kd, respectively. Although these two binding proteins are distinct, GM- CSF and IL-3 compete with each other for binding to KG-1 cells. Other cell lines, which express receptors for either factor but not for both do not display this cross-competition for binding with IL-3 and GM-CSF. These findings imply that distinct IL-3 and GM-CSF binding proteins are expressed on the cell surface and that an association exists between these proteins on KG-1 cells.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Rosemary E. Gale ◽  
Robin W. Freeburn ◽  
Asim Khwaja ◽  
Rajesh Chopra ◽  
David C. Linch

We report here a naturally occurring isoform of the human β chain common to the receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 (GMRβC) with a truncated intracytoplasmic tail caused by deletion of a 104-bp exon in the membrane-proximal region of the chain. This β intracytoplasmic truncated chain (βIT) has a predicted tail of 46 amino acids, instead of 432 for βC, with 23 amino acids in common with βC and then a new sequence of 23 amino acids. In primary myeloid cells, βIT comprised approximately 20% of the total β chain message, but was increased up to 90% of total in blast cells from a significant proportion of patients with acute leukemia. Specific anti-βITantibodies demonstrated its presence in primary myeloid cells and cell lines. Coexpression of βIT converted low-affinity GMRα chains (KD 2.5 nmol/L) to higher-affinity αβ complexes (KD 200 pmol/L). These could bind JAK2 that was tyrosine-phosphorylated by stimulation with GM-CSF. βITdid not support GM-CSF–induced proliferation when cotransfected with GMRα into CTLL-2 cells. Therefore, it may interfere with the signal-transducing properties of the βC chain and play a role in the pathogenesis of leukemia.


Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 3005-3017 ◽  
Author(s):  
Joanna M. Woodcock ◽  
Barbara J. McClure ◽  
Frank C. Stomski ◽  
Michael J. Elliott ◽  
Christopher J. Bagley ◽  
...  

Abstract The granulocyte-macrophage colony-stimulating factor (GM-CSF ) receptor is expressed on normal and malignant hematopoietic cells as well as on cells from other organs in which it transduces a variety of functions. Despite the widespread expression and pleiotropic nature of the GM-CSF receptor, little is known about its assembly and activation mechanism. Using a combination of biochemical and functional approaches, we have found that the human GM-CSF receptor exists as an inducible complex, analogous to the interleukin-3 (IL-3) receptor, and also as a preformed complex, unlike the IL-3 receptor or indeed other members of the cytokine receptor superfamily. We found that monoclonal antibodies to the GM-CSF receptor α chain (GMRα) and to the common β chain of the GM-CSF, IL-3, and IL-5 receptors (βc ) immunoprecipitated both GMRα and βc from the surface of primary myeloid cells, myeloid cell lines, and transfected cells in the absence of GM-CSF. Further association of the two chains could be induced by the addition of GM-CSF. The preformed complex required only the extracellular regions of GMRα and βc , as shown by the ability of soluble βc to associate with membrane-anchored GMRα or soluble GMRα. Kinetic experiments on eosinophils and monocytes with radiolabeled GM-CSF, IL-3, and IL-5 showed association characteristics unique to GM-CSF. Significantly, receptor phosphorylation experiments showed that not only GM-CSF but also IL-3 and IL-5 stimulated the phosphorylation of GMRα-associated βc . These results indicate a pattern of assembly of the heterodimeric GM-CSF receptor that is unique among receptors of the cytokine receptor superfamily. These results also suggest that the preformed GM-CSF receptor complex mediates the instantaneous binding of GM-CSF and is a target of phosphorylation by IL-3 and IL-5, raising the possibility that some of the biologic activities of IL-3 and IL-5 are mediated through the GM-CSF receptor complex.


1992 ◽  
Vol 10 (9) ◽  
pp. 1452-1459 ◽  
Author(s):  
W Brugger ◽  
J Frisch ◽  
G Schulz ◽  
K Pressler ◽  
R Mertelsmann ◽  
...  

PURPOSE To combine the benefits of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) on neutrophil recovery and recombinant human interleukin-3 (rhIL-3) on platelet recovery, we applied standard-dose chemotherapy with the combined administration of IL-3 and GM-CSF to investigate their efficacy and toxicity. PATIENTS AND METHODS Thirty-six patients with advanced malignancies were treated with etoposide (VP16) 500 mg/m2, ifosfamide 4 g/m2, and cisplatin 50 mg/m2 (VIP), followed by the sequential administration of IL-3 (days 1 to 5 subcutaneously [SC]) and GM-CSF (day 6 to 15 SC). Control patients received GM-CSF alone or were treated without hematopoietic growth factors. RESULTS Subcutaneous IL-3 and GM-CSF treatment was well tolerated; low-grade fever (World Health Organization grade 1 to 2) was the only consistent clinical symptom. Neutrophil recovery documented that the duration of neutropenia less than 0.1 x 10(9)/L or less than 0.5 x 10(9)/L was identical in GM-CSF as well as IL-3 and GM-CSF-treated patients, but was shortened significantly when compared with patients who were treated without cytokines. Overall platelet recovery was not different significantly in the three treatment groups. The biologic activity of IL-3 in this cytokine combination was reflected in a variety of effects, which included an increase in basophil and eosinophil counts and the induction of circulating hematopoietic progenitor cells. CONCLUSION We conclude that after conventional-dose VIP chemotherapy, a shortened treatment course of IL-3 (5 days) sequentially followed by GM-CSF (10 days) combines the benefits of prolonged single GM-CSF treatment on WBC count recovery in all patients and an accelerated platelet recovery only in some intensively pretreated patients.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Rosemary E. Gale ◽  
Robin W. Freeburn ◽  
Asim Khwaja ◽  
Rajesh Chopra ◽  
David C. Linch

Abstract We report here a naturally occurring isoform of the human β chain common to the receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 (GMRβC) with a truncated intracytoplasmic tail caused by deletion of a 104-bp exon in the membrane-proximal region of the chain. This β intracytoplasmic truncated chain (βIT) has a predicted tail of 46 amino acids, instead of 432 for βC, with 23 amino acids in common with βC and then a new sequence of 23 amino acids. In primary myeloid cells, βIT comprised approximately 20% of the total β chain message, but was increased up to 90% of total in blast cells from a significant proportion of patients with acute leukemia. Specific anti-βITantibodies demonstrated its presence in primary myeloid cells and cell lines. Coexpression of βIT converted low-affinity GMRα chains (KD 2.5 nmol/L) to higher-affinity αβ complexes (KD 200 pmol/L). These could bind JAK2 that was tyrosine-phosphorylated by stimulation with GM-CSF. βITdid not support GM-CSF–induced proliferation when cotransfected with GMRα into CTLL-2 cells. Therefore, it may interfere with the signal-transducing properties of the βC chain and play a role in the pathogenesis of leukemia.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2880-2887 ◽  
Author(s):  
K Okuda ◽  
JS Sanghera ◽  
SL Pelech ◽  
Y Kanakura ◽  
M Hallek ◽  
...  

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF), Interleukin- 3 (IL-3), and Steel Factor (SF) induce proliferation of hematopoietic cells through binding to specific, high-affinity, cell surface receptors. However, little is known about postreceptor signal transduction pathways. In previous studies, we noted that each of these three factors could independently support proliferation of the human MO7 cell line, and also that each factor induced a rapid increase in protein-tyrosyl phosphorylation. Although the proteins phosphorylated on tyrosine by GM-CSF and IL-3 are similar or identical in MO7 cells, many of the proteins that are phosphorylated on tyrosine after SF are different. However, two proteins, p42 and p44, were prominently phosphorylated in response to all three of the factors. In MO7 cells, the tyrosyl phosphorylation of p42 and p44 was transient, peaking at 5 to 15 minutes. In contrast to many of the other proteins which are tyrosyl phosphorylated in response to these factors, phosphorylation of p42 and p44 was temperature-dependent, occurring at 37 degrees C, but not at 4 degrees C. We identified the p42 protein as p42 Mitogen- Activated Protein Kinase (p42mapk, ERK-2) and the p44 as a p42mapk- related protein using monospecific antisera to MAP kinase. GM-CSF, IL- 3, and SF were each found to induce MAP kinase activity when assayed in vitro using myelin basic protein (MBP) as a substrate. Remarkably, we found that GM-CSF-induced tyrosyl phosphorylation of p42 and p44 even in nonproliferative cells (neutrophils) that respond to this CSF, and that p42 and p44 were two of the most prominently tyrosyl phosphorylated proteins following GM-CSF stimulation of these cells. These results implicate p42mapk and p44 as important signal transducing molecules in myeloid cells, and it is likely that these kinases play a role as part of a sequential “kinase cascade” linking growth factor receptors to mitogenesis and other cellular responses.


Sign in / Sign up

Export Citation Format

Share Document