chemical cross linking
Recently Published Documents


TOTAL DOCUMENTS

710
(FIVE YEARS 93)

H-INDEX

65
(FIVE YEARS 8)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jai Prakash Singh ◽  
Yang Li ◽  
Yi-Yun Chen ◽  
Shang-Te Danny Hsu ◽  
Rebecca Page ◽  
...  

AbstractT-Cell Protein Tyrosine Phosphatase (TCPTP, PTPN2) is a non-receptor type protein tyrosine phosphatase that is ubiquitously expressed in human cells. TCPTP is a critical component of a variety of key signaling pathways that are directly associated with the formation of cancer and inflammation. Thus, understanding the molecular mechanism of TCPTP activation and regulation is essential for the development of TCPTP therapeutics. Under basal conditions, TCPTP is largely inactive, although how this is achieved is poorly understood. By combining biomolecular nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and chemical cross-linking coupled with mass spectrometry, we show that the C-terminal intrinsically disordered tail of TCPTP functions as an intramolecular autoinhibitory element that controls the TCPTP catalytic activity. Activation of TCPTP is achieved by cellular competition, i.e., the intrinsically disordered cytosolic tail of Integrin-α1 displaces the TCPTP autoinhibitory tail, allowing for the full activation of TCPTP. This work not only defines the mechanism by which TCPTP is regulated but also reveals that the intrinsically disordered tails of two of the most closely related PTPs (PTP1B and TCPTP) autoregulate the activity of their cognate PTPs via completely different mechanisms.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cezary Czaplewski ◽  
Zhou Gong ◽  
Emilia A. Lubecka ◽  
Kai Xue ◽  
Chun Tang ◽  
...  

Many proteins can fold into well-defined conformations. However, intrinsically-disordered proteins (IDPs) do not possess a defined structure. Moreover, folded multi-domain proteins often digress into alternative conformations. Collectively, the conformational dynamics enables these proteins to fulfill specific functions. Thus, most experimental observables are averaged over the conformations that constitute an ensemble. In this article, we review the recent developments in the concept and methods for the determination of the dynamic structures of flexible peptides and proteins. In particular, we describe ways to extract information from nuclear magnetic resonance small-angle X-ray scattering (SAXS), and chemical cross-linking coupled with mass spectroscopy (XL-MS) measurements. All these techniques can be used to obtain ensemble-averaged restraints or to re-weight the simulated conformational ensembles.


2021 ◽  
pp. 52043
Author(s):  
Yang Zhou ◽  
Ruizhi Chu ◽  
Lulu Fan ◽  
Xianliang Meng ◽  
Jianqiao Zhao ◽  
...  

2021 ◽  
Author(s):  
Florian Patrick Bock ◽  
Anna Anchimiuk ◽  
Marie-Laure Diebold-Durand ◽  
Stephan Gruber

Chromosomes readily unlink from one another and segregate to daughter cells during cell division highlighting a remarkable ability of cells to organize long DNA molecules. SMC complexes mediate chromosome folding by DNA loop extrusion. In most bacteria, SMC complexes start loop extrusion at the ParB/parS partition complex formed near the replication origin. Whether they are recruited by recognizing a specific DNA structure in the partition complex or a protein component is unknown. By replacing genes in Bacillus subtilis with orthologous sequences from Streptococcus pneumoniae, we show that the three subunits of the bacterial Smc complex together with the ParB protein form a functional module that can organize and segregate chromosomes when transplanted into another organism. Using chimeric proteins and chemical cross-linking, we find that ParB binds to the Smc subunit directly. We map a binding interface to the Smc joint and the ParB CTP-binding domain. Structure prediction indicates how the ParB clamp presents DNA to the Smc complex to initiate DNA loop extrusion.


Author(s):  
Mateusz Szala

In this paper, a review of the available literature on physical and explosive properties of explosive compositions containing a secondary explosive and a polymer binder (PBX) is presented. The review focused on an analysis of the properties of compositions containing mostly synthetic polymers. The review showed that, at the moment, the most commonly used composition is a hexogen-based explosive bonded with a chemically cross-linked hydroxylterminated polybutadiene. The use of energetic polymers in PBX compositions was observed only in the experimental systems tested on a laboratory scale. The most popular methods of forming compositions include pressing a previously phlegmatized explosive or chemical cross-linking of the composition in the projectile shell. Compositions which can be formed and reloaded using injection machines are known, but due to many limitations, the method is not widely used.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ridhima Gomkale ◽  
Andreas Linden ◽  
Piotr Neumann ◽  
Alexander Benjamin Schendzielorz ◽  
Stefan Stoldt ◽  
...  

AbstractNuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2457
Author(s):  
Pieter-Jan Vermeire ◽  
Giel Stalmans ◽  
Anastasia V. Lilina ◽  
Jan Fiala ◽  
Petr Novak ◽  
...  

Given the role of intermediate filaments (IFs) in normal cell physiology and scores of IF-linked diseases, the importance of understanding their molecular structure is beyond doubt. Research into the IF structure was initiated more than 30 years ago, and some important advances have been made. Using crystallography and other methods, the central coiled-coil domain of the elementary dimer and also the structural basis of the soluble tetramer formation have been studied to atomic precision. However, the molecular interactions driving later stages of the filament assembly are still not fully understood. For cytoplasmic IFs, much of the currently available insight is due to chemical cross-linking experiments that date back to the 1990s. This technique has since been radically improved, and several groups have utilized it recently to obtain data on lamin filament assembly. Here, we will summarize these findings and reflect on the remaining open questions and challenges of IF structure. We argue that, in addition to X-ray crystallography, chemical cross-linking and cryoelectron microscopy are the techniques that should enable major new advances in the field in the near future.


Sign in / Sign up

Export Citation Format

Share Document