Meeting report of the International Symposium of Molecular Cell Biology of Macrophages '92

Cytokine ◽  
1993 ◽  
Vol 5 (2) ◽  
pp. 91-94
Author(s):  
Kouji Matsushima ◽  
Saburo Sone ◽  
Kikuo Onozaki ◽  
Masatoshi Yamazaki ◽  
Takeshi Yoshida ◽  
...  
Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 636 ◽  
Author(s):  
Thilo Stehle ◽  
Thomas Peters ◽  
Laura Hartmann ◽  
Mario Schelhaas

Glycans are, with nucleic acids, proteins and lipids, one of the four founding structures of cellular life. Due to their non-template synthesis, they are inherently heterogeneous and difficult to study with regards to their structure and function. Since 2016, the research group ViroCarb, funded by the German Research Foundation, has investigated the role of glycans in non-enveloped virus infections with a highly interdisciplinary approach. The core idea was to bring together scientists and students from various disciplines such as structural biology, cell biology, virology and chemistry to advance research by an interdisciplinary means. In 2018, ViroCarb hosted the 1st International Symposium on Glycovirology in Schöntal, Germany, with a similar aim. Scientists from various disciplines gathered to discuss their area of study, present recent findings, establish or strengthen collaborations, and mentor the next generation of glycovirologists through formal presentations and informal discussions. The secluded meeting at the monastery of Schöntal gave ample time for in-depth discussions. On behalf of ViroCarb, this report summarizes the reports and highlights advances in the field.


Author(s):  
K. Jacobson ◽  
A. Ishihara ◽  
B. Holifield ◽  
F. Zhang

Our laboratory is concerned with understanding the dynamic structure of the plasma membrane with particular reference to the movement of membrane constituents during cell locomotion. In addition to the standard tools of molecular cell biology, we employ both fluorescence recovery after photo- bleaching (FRAP) and digitized fluorescence microscopy (DFM) to investigate individual cells. FRAP allows the measurement of translational mobility of membrane and cytoplasmic molecules in small regions of single, living cells. DFM is really a new form of light microscopy in that the distribution of individual classes of ions, molecules, and macromolecules can be followed in single, living cells. By employing fluorescent antibodies to defined antigens or fluorescent analogs of cellular constituents as well as ultrasensitive, electronic image detectors and video image averaging to improve signal to noise, fluorescent images of living cells can be acquired over an extended period without significant fading and loss of cell viability.


2021 ◽  
Vol 7 (2) ◽  
pp. 149
Author(s):  
Sarah-Maria Wege ◽  
Katharina Gejer ◽  
Fabienne Becker ◽  
Michael Bölker ◽  
Johannes Freitag ◽  
...  

The phytopathogenic smut fungus Ustilago maydis is a versatile model organism to study plant pathology, fungal genetics, and molecular cell biology. Here, we report several strategies to manipulate the genome of U. maydis by the CRISPR/Cas9 technology. These include targeted gene deletion via homologous recombination of short double-stranded oligonucleotides, introduction of point mutations, heterologous complementation at the genomic locus, and endogenous N-terminal tagging with the fluorescent protein mCherry. All applications are independent of a permanent selectable marker and only require transient expression of the endonuclease Cas9hf and sgRNA. The techniques presented here are likely to accelerate research in the U. maydis community but can also act as a template for genome editing in other important fungi.


Blood ◽  
1997 ◽  
Vol 89 (11) ◽  
pp. 3897-3908 ◽  
Author(s):  
Xunxiang Du ◽  
David A. Williams

Sign in / Sign up

Export Citation Format

Share Document