scholarly journals Role of B cell receptor Igα and Igβ subunits in MHC class II-restricted antigen presentation

Immunity ◽  
1995 ◽  
Vol 3 (3) ◽  
pp. 335-347 ◽  
Author(s):  
Christian Bonnerot ◽  
Danielle Lankar ◽  
Daniel Hanau ◽  
Daniele Spehner ◽  
Jean Davoust ◽  
...  
2020 ◽  
Vol 205 (4) ◽  
pp. 945-956 ◽  
Author(s):  
Liza Rijvers ◽  
Marie-José Melief ◽  
Jamie van Langelaar ◽  
Roos M. van der Vuurst de Vries ◽  
Annet F. Wierenga-Wolf ◽  
...  

2002 ◽  
Vol 195 (4) ◽  
pp. 461-472 ◽  
Author(s):  
Danielle Lankar ◽  
Hélène Vincent-Schneider ◽  
Volker Briken ◽  
Takeaki Yokozeki ◽  
Graça Raposo ◽  
...  

Antigen recognition by clonotypic B cell receptor (BcR) is the first step of B lymphocytes differentiation into plasmocytes. This B cell function is dependent on efficient major histocompatibility complex (MHC) class II–restricted presentation of BcR-bound antigens. In this work, we analyzed the subcellular mechanisms underlying antigen presentation after BcR engagement on B cells. In quiescent B cells, we found that MHC class II molecules mostly accumulated at the cell surface and in an intracellular pool of tubulovesicular structures, whereas H2-M molecules were mostly detected in distinct lysosomal compartments devoid of MHC class II. BcR stimulation induced the transient intracellular accumulation of MHC class II molecules in newly formed multivesicular bodies (MVBs), to which H2-M was recruited. The reversible downregulation of cathepsin S activity led to the transient accumulation of invariant chain–MHC class II complexes in MVBs. A few hours after BcR engagement, cathepsin S activity increased, the p10 invariant chain disappeared, and MHC class II–peptide complexes arrived at the plasma membrane. Thus, BcR engagement induced the transient formation of antigen-processing compartments, enabling antigen-specific B cells to become effective antigen-presenting cells.


1997 ◽  
Vol 186 (8) ◽  
pp. 1299-1306 ◽  
Author(s):  
James R. Drake ◽  
Paul Webster ◽  
John C. Cambier ◽  
Ira Mellman

B cell receptor (BCR)-mediated antigen processing is a mechanism that allows class II–restricted presentation of specific antigen by B cells at relatively low antigen concentrations. Although BCR-mediated antigen processing and class II peptide loading may occur within one or more endocytic compartments, the functions of these compartments and their relationships to endosomes and lysosomes remain uncertain. In murine B cells, at least one population of class II– containing endocytic vesicles (i.e., CIIV) has been identified and demonstrated to be distinct both physically and functionally from endosomes and lysosomes. We now demonstrate the delivery of BCR-internalized antigen to CIIV within the time frame during which BCR-mediated antigen processing and formation of peptide–class II complexes occurs. Only a fraction of the BCR-internalized antigen was delivered to CIIV, with the majority of internalized antigen being delivered to lysosomes that are largely class II negative. The extensive colocalization of BCR-internalized antigen and newly synthesized class II molecules in CIIV suggests that CIIV may represent a specialized subcellular compartment for BCR-mediated antigen processing. Additionally, we have identified a putative CIIV-marker protein, immunologically related to the Igα subunit of the BCR, which further illustrates the unique nature of these endocytic vesicles.


Sign in / Sign up

Export Citation Format

Share Document