b cell receptor signaling
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 69)

H-INDEX

45
(FIVE YEARS 5)

2021 ◽  
Vol 17 (12) ◽  
pp. e1009617
Author(s):  
Matthew N. McCall ◽  
Chin-Yi Chu ◽  
Lu Wang ◽  
Lauren Benoodt ◽  
Juilee Thakar ◽  
...  

Respiratory syncytial virus (RSV) infection results in millions of hospitalizations and thousands of deaths each year. Variations in the adaptive and innate immune response appear to be associated with RSV severity. To investigate the host response to RSV infection in infants, we performed a systems-level study of RSV pathophysiology, incorporating high-throughput measurements of the peripheral innate and adaptive immune systems and the airway epithelium and microbiota. We implemented a novel multi-omic data integration method based on multilayered principal component analysis, penalized regression, and feature weight back-propagation, which enabled us to identify cellular pathways associated with RSV severity. In both airway and immune cells, we found an association between RSV severity and activation of pathways controlling Th17 and acute phase response signaling, as well as inhibition of B cell receptor signaling. Dysregulation of both the humoral and mucosal response to RSV may play a critical role in determining illness severity.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2281-2281
Author(s):  
Rachel Gallant ◽  
Katti Arroyo ◽  
Paige Bracci ◽  
Catherine Metayer ◽  
Adam J. de Smith ◽  
...  

Abstract Background: Recent evidence supports the role of cytomegalovirus (CMV) in the development of childhood ALL. The underlying mechanism and CMV's role in the leukemic cell phenotype is unknown, but CMV typically interacts with the host immune system allowing the virus to survive in a latent state; it may be that this immune dysregulation affects the risk of ALL. This study aims to explore the association of CMV and ALL at the time of leukemia diagnosis, using AML cases as a control and further, to determine whether CMV affects certain subgroups of ALL patients such as specific ethnicities, age groups, or cytogenetic subtypes. Methods: Pediatric diagnostic leukemia bone marrow samples obtained from the California Childhood Leukemia Study were screened for the presence of CMV DNA using a custom-designed droplet digital PCR assay. A total of 869 cases were analyzed including 125 AML cases and 744 ALL cases. Demographic and clinical features were compared between patients found to be CMV positive (cases with any detectable CMV positive droplets) and those who were CMV negative (cases with no detectable CMV positive droplets). The effect of the level of CMV viral DNA load was also assessed. For a subset of cases (n=61), Affymetrix Array gene expression data were available and differential gene expression performed to compare CMV positive cases with high viral load to CMV negative cases. Odds ratios and confidence intervals were estimated using logistic regression. Results: ALL cases were more likely to be CMV positive compared to AML (OR: 2.50; CI 1.00, 5.47, p = 0.039 for CMV highest quintile vs. CMV negative). Within ALL cases, B-cell ALL (B-ALL) was significantly associated with CMV positivity compared to T-cell ALL (T-ALL) (OR: 2.93; CI: 1.01, 8.52, p = 0.048 for CMV highest tertile vs. CMV negative). Further subtype analysis of B-ALL cases revealed CMV positivity to be significantly associated with high hyperdiploidy, one of the most common ALL subtypes, when compared to ETV6-RUNX1 (OR: 2.52; CI:1.34, 4.73, p = 0.004 for highest CMV tertile vs. CMV negative). CMV positive B-ALL cases were also more likely to harbor deletions of EBF1, a B-cell development gene, compared to CMV negative cases (OR: 6.10; CI: 1.09, 34.06, p = 0.04 for CMV 2 nd tertile vs. CMV negative; OR: 5.54; CI: 1.13, 27.18, p = 0.03 for CMV highest tertile vs. CMV negative). Differential gene expression analysis revealed 830 genes to be significantly differentially expressed between the highest quintile of CMV positive cases and CMV negative cases, and gene ontology analysis revealed upregulation of processes involved in viral infection and replication. Specifically, cytokine signaling pathways including IL-1, IL-8, and IL-7 were upregulated in CMV positive cases while Th1 and the pathway facilitating crosstalk between dendritic cells and natural killer cells were downregulated. Interestingly, B-cell receptor signaling was also upregulated in CMV positive cases. Conclusion: Our results support the hypothesis that CMV plays an enhanced role in leukemia development in specific subtypes of ALL, and not in AML development. The ability of CMV to interact with the host immune system, highlights immune dysregulation as a potential mechanism by which CMV contributes to risk of ALL. Gene expression analysis on a subset of cases revealed differentially expressed genes to be enriched in pathways involved in immune response, suggesting a potential role for active CMV infection in the leukemic phenotype. The patterns of up- and downregulation in these pathways were consistent with the host response to CMV. Additionally, acute CMV infection has been shown to promote B-cell activation and proliferation. Further, CMV seropositive individuals have been reported to have altered immune responses even with the virus in a latent state highlighting the virus's effect on B-cells. In our study we also found B-cell receptor signaling to be upregulated in CMV positive cases. This is consistent with the known effects of CMV in a typical host, but in patients with leukemia it provides an interesting potential link between CMV infection and development of pediatric ALL. These intriguing results require validation and warrant continued investigation of the role of CMV in pediatric leukemia development. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1021
Author(s):  
Justin W. Gorski ◽  
Zhuwei Zhang ◽  
J. Robert McCorkle ◽  
Jodi M. DeJohn ◽  
Chi Wang ◽  
...  

The development of patient-derived tumor organoids (TOs) from an epithelial ovarian cancer tumor obtained at the time of primary or interval debulking surgery has the potential to play an important role in precision medicine. Here, we utilized TOs to test front-line chemotherapy sensitivity and to investigate genomic drivers of carboplatin resistance. We developed six high-grade, serous epithelial ovarian cancer tumor organoid lines from tissue obtained during debulking surgery (two neoadjuvant-carboplatin-exposed and four chemo-naïve). Each organoid line was screened for sensitivity to carboplatin at four different doses (100, 10, 1, and 0.1 µM). Cell viability curves and resultant EC50 values were determined. One organoid line, UK1254, was predicted to be resistant to carboplatin based on its EC50 value (50.2 µM) being above clinically achievable Cmax. UK1254 had a significantly shorter PFS than the rest of the subjects (p = 0.0253) and was treated as a platinum-resistant recurrence. Subsequent gene expression analysis revealed extensively interconnected, differentially expressed pathways related to NF-kB, cellular differentiation (PRDM6 activation), and the linkage of B-cell receptor signaling to the PI3K–Akt signaling pathway (PI3KAP1 activation). This study demonstrates that patient-derived tumor organoids can be developed from patients at the time of primary or interval debulking surgery and may be used to predict clinical platinum sensitivity status or to investigate drivers of carboplatin resistance.


2021 ◽  
pp. ji2100132
Author(s):  
Sarah J. Meyer ◽  
Marie Steffensen ◽  
Andreas Acs ◽  
Thomas Weisenburger ◽  
Charlotte Wadewitz ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Inhye E. Ahn ◽  
Jennifer R. Brown

Targeting the B-cell receptor signaling pathway through BTK inhibition proved to be effective for the treatment of chronic lymphocytic leukemia (CLL) and other B-cell lymphomas. Covalent BTK inhibitors (BTKis) led to an unprecedented improvement in outcome in CLL, in particular for high-risk subgroups with TP53 aberration and unmutated immunoglobulin heavy-chain variable-region gene (IGHV). Ibrutinib and acalabrutinib are approved by the US Food and Drug Administration for the treatment of CLL and other B-cell lymphomas, and zanubrutinib, for patients with mantle cell lymphoma. Distinct target selectivity of individual BTKis confer differences in target-mediated as well as off-target adverse effects. Disease progression on covalent BTKis, driven by histologic transformation or selective expansion of BTK and PLCG2 mutated CLL clones, remains a major challenge in the field. Fixed duration combination regimens and reversible BTKis with non-covalent binding chemistry hold promise for the prevention and treatment of BTKi-resistant disease.


Sign in / Sign up

Export Citation Format

Share Document