Arrangement of the Combined Production of Power/Heat in a Supralocal Electric Power Grid System

Author(s):  
Saad Afzal

Smart Grid is a communication and automatic control capabilities in electric power grid system for improving efficiency, reliability, management, capabilities and security of electric power grid. Routing is important in Smart Grid to send data from one point to another point. Routing in Smart Grid is necessary to search /identify destination point/node for communication and to computer the best available route in the network topology among which the data to be sent during communication. Smart Grid can be a combination of fixed nodes (home appliances, smart meter, control centre, etc.) but the nature of communication between fixed nodes is dynamic due to the switch on/off or the fluctuation in electricity flow. Therefore the fixed nodes can also be disappeared from the network topology in Smart Grid. Existing routing protocols for Smart Grid are based on flooding mechanism. We would like to examine the feasibility of flooding free routing in Smart Grid. Then we will propose a flooding-free routing for Smart.


2017 ◽  
pp. 575-598
Author(s):  
Saad Afzal

Smart Grid is a communication and automatic control capabilities in electric power grid system for improving efficiency, reliability, management, capabilities and security of electric power grid. Routing is important in Smart Grid to send data from one point to another point. Routing in Smart Grid is necessary to search /identify destination point/node for communication and to computer the best available route in the network topology among which the data to be sent during communication. Smart Grid can be a combination of fixed nodes (home appliances, smart meter, control centre, etc.) but the nature of communication between fixed nodes is dynamic due to the switch on/off or the fluctuation in electricity flow. Therefore the fixed nodes can also be disappeared from the network topology in Smart Grid. Existing routing protocols for Smart Grid are based on flooding mechanism. We would like to examine the feasibility of flooding free routing in Smart Grid. Then we will propose a flooding-free routing for Smart.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3112
Author(s):  
Donghyeon Lee ◽  
Seungwan Son ◽  
Insu Kim

Widespread interest in environmental issues is growing. Many studies have examined the effect of distributed generation (DG) from renewable energy resources on the electric power grid. For example, various studies efficiently connect growing DG to the current electric power grid. Accordingly, the objective of this study is to present an algorithm that determines DG location and capacity. For this purpose, this study combines particle swarm optimization (PSO) and the Volt/Var control (VVC) of DG while regulating the voltage magnitude within the allowable variation (e.g., ±5%). For practical optimization, the PSO algorithm is enhanced by applying load profile data (e.g., 24-h data). The objective function (OF) in the proposed PSO method considers voltage variations, line losses, and economic aspects of deploying large-capacity DG (e.g., installation costs) to transmission networks. The case studies validate the proposed method (i.e., optimal allocation of DG with the capability of VVC with PSO) by applying the proposed OF to the PSO that finds the optimal DG capacity and location in various scenarios (e.g., the IEEE 14- and 30-bus test feeders). This study then uses VVC to compare the voltage profile, loss, and installation cost improved by DG to a grid without DG.


Author(s):  
Hans Peter Kraemer ◽  
Anne Bauer ◽  
Michael Frank ◽  
Peter Van Hasselt ◽  
Peter Kummeth ◽  
...  

Author(s):  
Soo-Hoan Lee ◽  
Kang-Wan Lee ◽  
Yong-Beum Yoon ◽  
Ok-Bae Hyun

Sign in / Sign up

Export Citation Format

Share Document