SIMULATION OF POSITIONING ACCURACY OF THE TORCH IN ADAPTIVE ROBOTIC WELDING SYSTEM

Author(s):  
M. Kvasnica ◽  
Š. Petráš ◽  
I. Kočiš
1987 ◽  
Vol 20 (12) ◽  
pp. 293-298
Author(s):  
M. Kvasnica ◽  
Š. Petráš ◽  
I. Kočiš

2016 ◽  
Vol 85 (7) ◽  
pp. 657-662
Author(s):  
Satoshi YAMANE

Author(s):  
Aaron T. O’Toole ◽  
Stephen L. Canfield

Skid steer tracked-based robots are popular due to their mechanical simplicity, zero-turning radius and greater traction. This architecture also has several advantages when employed by mobile platforms designed to climb and navigate ferrous surfaces, such as increased magnet density and low profile (center of gravity). However, creating a kinematic model for localization and motion control of this architecture is complicated due to the fact that tracks necessarily slip and do not roll. Such a model could be based on a heuristic representation, an experimentally-based characterization or a probabilistic form. This paper will extend an experimentally-based kinematic equivalence model to a climbing, track-based robot platform. The model will be adapted to account for the unique mobility characteristics associated with climbing. The accuracy of the model will be evaluated in several representative tasks. Application of this model to a climbing mobile robotic welding system (MRWS) is presented.


2015 ◽  
Vol 34 (5) ◽  
pp. 1060-1066 ◽  
Author(s):  
C. Fang ◽  
Y. T. Song ◽  
J. Wei ◽  
J. J. Xin ◽  
H. P. Wu ◽  
...  

2020 ◽  
Vol 8 (5) ◽  
pp. 5246-5251

Customary automated welding, basic in ventures, for example, car creation, gets unfeasible in enterprises that utilization unstructured assembling systems, for example, shipbuilding. This is expected to some extent to the size of the made frameworks and the size and areas of the weld. In these unstructured assembling conditions, the cutting edge for automated welding has generally comprised of a fixed-track framework with a mechanical welding carriage that works along the track. In any case, elective automated welding approaches that utilize advancements from the field of versatile mechanical autonomy are being sought after. One such model is the semiautonomous Versatile Robotic Welding System (MRWS). The MRWS is a lightweight versatile controller comprising of a two-degrees-of-opportunity portable stage and a threedegrees-of-opportunity burn controller. The MRWS is equipped for climbing ferrous surfaces by the utilization of changeless magnet tracks and situating the welding light along a weld joint. This framework is intended to automate the welding procedure for an assortment of weld joints with insignificant arrangement time. Arrangement comprises of putting the MRWS superficially to be welded and heading to the expected weld joint. So as to be used in a producing condition, such a framework must be confirmed for the welding procedure it is performing. This paper exhibits and confirms the MRWS as a legitimate other option for automated welding in unstructured situations. The confirmation procedure comprises of two parts: plan approval dependent on hypothetical investigation of the MRWS framework models to demonstrate the weld procedure necessities can be met, trailed by an exact confirmation dependent on AWS weld test particulars for a particular, normally utilized welding process. The plan approval centers around the two essential contrasts between the MRWS and demonstrated fixed-track motorized welding frameworks, burn movement control on a portable stage, and effect of the MRWS attractive feet on the weld process. The observational confirmation was performed on a vertical section weld on gentle steel with tough movement, 3G-PF


2021 ◽  
Vol 11 (23) ◽  
pp. 11280
Author(s):  
Yun-Peng Su ◽  
Xiao-Qi Chen ◽  
Tony Zhou ◽  
Christopher Pretty ◽  
J. Geoffrey Chase

This paper presents an integrated scheme based on a mixed reality (MR) and haptic feedback approach for intuitive and immersive teleoperation of robotic welding systems. By incorporating MR technology, the user is fully immersed in a virtual operating space augmented by real-time visual feedback from the robot working space. The proposed robotic tele-welding system features imitative motion mapping from the user’s hand movements to the welding robot motions, and it enables the spatial velocity-based control of the robot tool center point (TCP). The proposed mixed reality virtual fixture (MRVF) integration approach implements hybrid haptic constraints to guide the operator’s hand movements following the conical guidance to effectively align the welding torch for welding and constrain the welding operation within a collision-free area. Onsite welding and tele-welding experiments identify the operational differences between professional and unskilled welders and demonstrate the effectiveness of the proposed MRVF tele-welding framework for novice welders. The MRVF-integrated visual/haptic tele-welding scheme reduced the torch alignment times by 56% and 60% compared to the MRnoVF and baseline cases, with minimized cognitive workload and optimal usability. The MRVF scheme effectively stabilized welders’ hand movements and eliminated undesirable collisions while generating smooth welds.


2005 ◽  
Author(s):  
H.B. Smartt ◽  
A.D. Watkins ◽  
D.P. Pace ◽  
R.J. Bitsoi ◽  
E.D> Larsen T.R. McJunkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document