MULTIVARIABLE CONTROL OF A CATALYTIC TUBULAR REACTOR USING BOTH WIENER-HOPF CONTROLLER DESIGN AND INTERNAL MODEL CONTROLLER DESIGN APPROACHES

Author(s):  
D.J. Kozub ◽  
J.F. MacGregor ◽  
Joseph D. Wright
2012 ◽  
Vol 238 ◽  
pp. 66-70 ◽  
Author(s):  
Ling Quan ◽  
Hai Long Zhang ◽  
Yang Yang

Multivariable non-square systems with time delays widely exist in the chemical production process. Owing to the matrix that is adopted to describe non-square system is not square, many classical multivariable control methods can be hardly applied in such system. In this paper, based on non-square effective relative gain (NERGA), a novel internal model control method is proposed. Firstly the input and output loops of the non-square system are paired using NERGA, and then V-norm internal model controller is designed based on the model of squared subsystem. Finally, smulation study is carried out for a non-square system. The results can demonstrate the effectiveness of the proposed method.


2012 ◽  
Vol 197 ◽  
pp. 311-315 ◽  
Author(s):  
Qi Bing Jin ◽  
Rong Li

A V-norm Decoupling internal model control (IMC) method with filters based on inverted decoupling for multivariate stable object is proposed in this paper. The actual industrial process is very difficult to obtain an accurate model, which makes the control effect not satisfactory. To solve this problem, the V-norm decoupling controller is designed on the basis of the inverted decoupling, and a filter is added in front of the controller to reduce coupling and increase robustness. Compared with traditional multivariable controller designed method, the method of designing the internal model controller in this paper is simpler and less calculation. Finally, the Wood/Berry model is taken as the simulated object to verify the controller design method is reasonable. The results show that V-norm decoupling internal model controller method is effective and feasible, even the system model is mismatched.


Sign in / Sign up

Export Citation Format

Share Document