pm synchronous motor
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 35)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Dongsu Lee

This paper proposes an integrated magnetics, insulation, and cooling architecture to improve the thermal performance of a high frequency permanent magnet (PM) motor. The proposed architecture can be used for any motor topology to improve its thermal and insulation performance. The proposed stator yoke design interleaves copper sheets between yoke core lamination to achieve better thermal conduction from winding to heat sink. A ceramic winding holder is integrated into the armature to introduce a parallel thermal conduction path from windings to the iron yoke and to provide additional insulation. The architecture is applied to a 300 kW slotless PM synchronous motor consisting of an outer rotor Halbach PM array, slotless stator, and heatsink. 3D electromagnetic finite element methods (FEM), 2D heat transfer FEM, and an analytical thermal circuit are used to analyze the architectures impact on torque production, eddy currents, and thermal performance when compared to the baseline motor. Finally, a pole-pair prototype was built as a proof-of-concept and to verify the performance benefits of the proposed architecture.


2021 ◽  
Author(s):  
Dongsu Lee

This paper proposes an integrated magnetics, insulation, and cooling architecture to improve the thermal performance of a high frequency permanent magnet (PM) motor. The proposed architecture can be used for any motor topology to improve its thermal and insulation performance. The proposed stator yoke design interleaves copper sheets between yoke core lamination to achieve better thermal conduction from winding to heat sink. A ceramic winding holder is integrated into the armature to introduce a parallel thermal conduction path from windings to the iron yoke and to provide additional insulation. The architecture is applied to a 300 kW slotless PM synchronous motor consisting of an outer rotor Halbach PM array, slotless stator, and heatsink. 3D electromagnetic finite element methods (FEM), 2D heat transfer FEM, and an analytical thermal circuit are used to analyze the architectures impact on torque production, eddy currents, and thermal performance when compared to the baseline motor. Finally, a pole-pair prototype was built as a proof-of-concept and to verify the performance benefits of the proposed architecture.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5311
Author(s):  
Ki-Doek Lee ◽  
Jeong-Jong Lee ◽  
Myung-Hwan Yoon ◽  
Joon-Sung Park

A voltage-parameter map (VP-Map) is proposed for predicting the performance of electric vehicles (EVs) and hybrid EVs (HEVs), which varies with respect to the parameters in a variable load and flux-weakening range, and determining the design parameters. Through this, the maximum torque that can be generated at the maximum speed, the input current for generation of the rated torque, and whether the vehicle is operable with a light load are predicted, and the design parameters suitable for the 120-kW class interior permanent-magnet (PM) synchronous motor for HEVs, which is the target electric motor of this study, are determined. A flux-concentrating PM synchronous motor (FCPMSM) is proposed that can be designed using the desired design parameters depending on the degree of the flux concentration. The validity of the VP-Map was verified by analyzing the characteristics of three types of FCPMSMs with different parameter combinations, and a PM synchronous motor for an EV having a high output, high efficiency, and high-power factor was designed. Lastly, the requirements were checked, and the analysis was validated by testing the designed motor.


2021 ◽  
Vol 23 (1) ◽  
pp. 1-10
Author(s):  
Łukasz Knypiński

This paper presents the algorithm and computer software for constrained optimization based on the gray wolf algorithm. The gray wolf algorithm was combined with the external penalty function approach. The optimization procedure was developed using Borland Delphi 7.0. The developed procedure was then applied to design of a line-start PM synchronous motor. The motor was described by three design variables which determine the rotor structure. The multiplicative compromise function consisted of three maintenance parameters of designed motor and one non-linear constraint function was proposed. Next, the result obtained for the developed procedure (together with the gray wolf algorithm) was compared with results obtained using: (a) the particle swarm optimization algorithm, (b) the bat algorithm and (c) the genetic algorithm. The developed optimization algorithm is characterized by good convergence, robustness and reliability. Selected results of the computer simulation are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document