INTERPRETATION OF TRAFFIC SCENES BY EVALUATION OF OPTICAL FLOW FIELDS FROM IMAGE SEQUENCES

Author(s):  
W. Enkelmann
2020 ◽  
Vol 128 (4) ◽  
pp. 873-890 ◽  
Author(s):  
Anurag Ranjan ◽  
David T. Hoffmann ◽  
Dimitrios Tzionas ◽  
Siyu Tang ◽  
Javier Romero ◽  
...  

AbstractThe optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single- and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.


Author(s):  
NAOYA OHNISHI ◽  
ATSUSHI IMIYA

In this paper, we present an algorithm for the hierarchical recognition of an environment using independent components of optical flow fields for the visual navigation of a mobile robot. For the computation of optical flow, the pyramid transform of an image sequence is used for the analysis of global and local motion. Our algorithm detects the planar region and obstacles in the image from optical flow fields at each layer in the pyramid. Therefore, our algorithm allows us to achieve both global perception and local perception for robot vision. We show experimental results for both test image sequences and real image sequences captured by a mobile robot. Furthermore, we show some aspects of this work from the viewpoint of information theory.


Author(s):  
HANS-HELLMUT NAGEL

Many investigations of image sequences can be understood on the basis of a few concepts for which computational approaches become increasingly available. The estimation of optical flow fields is discussed, exhibiting a common foundation for feature-based and differential approaches. The interpretation of optical flow fields is mostly concerned so far with approaches which infer the 3-D structure of a rigid point configuration in 3-D space and its relative motion with respect to the image sensor from an image sequence. The combination of stereo and motion provides additional incentives to evaluate image sequences, especially for the control of robots and autonomous vehicles. Advances in all these areas lead to the desire to describe the spatio-temporal development recorded by an image sequence not only at the level of geometry, but also at higher conceptual levels, for example by natural language descriptions.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3722
Author(s):  
Byeongkeun Kang ◽  
Yeejin Lee

Motion in videos refers to the pattern of the apparent movement of objects, surfaces, and edges over image sequences caused by the relative movement between a camera and a scene. Motion, as well as scene appearance, are essential features to estimate a driver’s visual attention allocation in computer vision. However, the fact that motion can be a crucial factor in a driver’s attention estimation has not been thoroughly studied in the literature, although driver’s attention prediction models focusing on scene appearance have been well studied. Therefore, in this work, we investigate the usefulness of motion information in estimating a driver’s visual attention. To analyze the effectiveness of motion information, we develop a deep neural network framework that provides attention locations and attention levels using optical flow maps, which represent the movements of contents in videos. We validate the performance of the proposed motion-based prediction model by comparing it to the performance of the current state-of-art prediction models using RGB frames. The experimental results for a real-world dataset confirm our hypothesis that motion plays a role in prediction accuracy improvement, and there is a margin for accuracy improvement by using motion features.


2015 ◽  
Vol 742 ◽  
pp. 290-293
Author(s):  
Xiu Zhi Li ◽  
Ai Lin Yang ◽  
Huan Qiu ◽  
Song Min Jia

This paper presents a technique for monocular Structure from Motion (SFM) that reconstructs 3D world shape. The technique proposed uses optical flow for 2D pixel pair matching and Angular Bundle Ajustment (ABA) for 3D structure refinement. The proposed strategy has two main advantages. Firstly, optical flow fields provide sufficient dense correspondence of image point pairs and secondly, ABA outperforms classic BA variants, especially for the points relatively far from camera. The reconstruction results obtained in realistic scenario demonstrate the effectiveness and accuracy of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document