Simple steam plant

Author(s):  
R.W. HAYWOOD
Keyword(s):  
2005 ◽  
Vol 22 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Alexander Donchev ◽  
Harald Fietzek ◽  
Vladislav Kolarik ◽  
Daniel Renusch ◽  
Michael Schütze

Author(s):  
Jason D. Miller ◽  
David J. Buckmaster ◽  
Katherine Hart ◽  
Timothy J. Held ◽  
David Thimsen ◽  
...  

Increasing the efficiency of coal-fired power plants is vital to reducing electricity costs and emissions. Power cycles employing supercritical carbon dioxide (sCO2) as the working fluid have the potential to increase power cycle efficiency by 3–5% points over state-of-the-art oxy-combustion steam-Rankine cycles operating under comparable conditions. To date, the majority of studies have focused on the integration and optimization of sCO2 power cycles in waste heat, solar, or nuclear applications. The goal of this study is to demonstrate the potential of sCO2 power cycles, and quantify the power cycle efficiency gains that can be achieved versus the state-of-the-art steam-Rankine cycles employed in oxy-fired coal power plants. Turbine inlet conditions were varied among the sCO2 test cases and compared with existing Department of Energy (DOE)/National Energy Technology6 Laboratory (NETL) steam base cases. Two separate sCO2 test cases were considered and the associated flow sheets developed. The turbine inlet conditions for this study were chosen to match conditions in a coal-fired ultra-supercritical steam plant (Tinlet = 593°C, Pinlet = 24.1 MPa) and an advanced ultra-supercritical steam plant (Tinlet = 730°C, Pinlet = 27.6 MPa). A plant size of 550 MWe, was selected to match available information on existing DOE/NETL bases cases. The effects of cycle architecture, combustion-air preheater temperature, and cooling source type were considered subject to comparable heat source and reference conditions taken from the steam Rankine reference cases. Combinations and variants of sCO2 power cycles — including cascade and recompression and variants with multiple reheat and compression steps — were considered with varying heat-rejection subsystems — air-cooled, direct cooling tower, and indirect-loop cooling tower. Where appropriate, combustion air preheater inlet temperature was also varied. Through use of a multivariate nonlinear optimization design process that considers both performance and economic impacts, curves of minimum cost versus efficiency were generated for each sCO2 test case and combination of architecture and operational choices. These curves indicate both peak theoretical efficiency and suggest practical limits based on incremental cost versus performance. For a given test case, results for individual architectural and operational options give insight to cost and performance improvements from step-changes in system complexity and design, allowing down selection of candidate architectures. Optimized designs for each test case were then selected based on practical efficiency limits within the remaining candidate architectures and compared to the relevant baseline steam plant. sCO2 cycle flowsheets are presented for each optimized design.


Author(s):  
Arthur P. Fraas

Pressurizing a fluidized bed combustor with a gas turbine greatly improves both sulfur retention and combustion efficiency. Operating the gas turbine with a high inlet temperature (e.g. 900°C) would yield a thermal efficiency about four points higher than for an atmospheric furnace, but 40 y of experience have failed to solve problems with flyash erosion and deposits. Extensive experience such as that with fluidized bed catalytic cracking units indicates that the gas turbine blade erosion and deposit problems can be handled by dropping the turbine inlet temperature below 400°C where the turbine delivers just enough power to drive the compressor. The resulting thermal efficiency is about half a point higher than for an atmospheric bed, and the capital cost of the FBC-related components is about 40% lower. While a closed-cycle helium gas turbine might be used rather than a steam cycle, the thermal efficiency would be about four points lower and the capital cost of the FBC-related components would be roughly twice that for the corresponding steam plant.


2005 ◽  
Vol 22 (1-2) ◽  
pp. 139-146 ◽  
Author(s):  
Alexander Donchev ◽  
Harald Fietzek ◽  
Vladislav Kolarik ◽  
Daniel Renusch ◽  
Michael Schütze

Sign in / Sign up

Export Citation Format

Share Document