Comparison of Supercritical CO2 Power Cycles to Steam Rankine Cycles in Coal-Fired Applications

Author(s):  
Jason D. Miller ◽  
David J. Buckmaster ◽  
Katherine Hart ◽  
Timothy J. Held ◽  
David Thimsen ◽  
...  

Increasing the efficiency of coal-fired power plants is vital to reducing electricity costs and emissions. Power cycles employing supercritical carbon dioxide (sCO2) as the working fluid have the potential to increase power cycle efficiency by 3–5% points over state-of-the-art oxy-combustion steam-Rankine cycles operating under comparable conditions. To date, the majority of studies have focused on the integration and optimization of sCO2 power cycles in waste heat, solar, or nuclear applications. The goal of this study is to demonstrate the potential of sCO2 power cycles, and quantify the power cycle efficiency gains that can be achieved versus the state-of-the-art steam-Rankine cycles employed in oxy-fired coal power plants. Turbine inlet conditions were varied among the sCO2 test cases and compared with existing Department of Energy (DOE)/National Energy Technology6 Laboratory (NETL) steam base cases. Two separate sCO2 test cases were considered and the associated flow sheets developed. The turbine inlet conditions for this study were chosen to match conditions in a coal-fired ultra-supercritical steam plant (Tinlet = 593°C, Pinlet = 24.1 MPa) and an advanced ultra-supercritical steam plant (Tinlet = 730°C, Pinlet = 27.6 MPa). A plant size of 550 MWe, was selected to match available information on existing DOE/NETL bases cases. The effects of cycle architecture, combustion-air preheater temperature, and cooling source type were considered subject to comparable heat source and reference conditions taken from the steam Rankine reference cases. Combinations and variants of sCO2 power cycles — including cascade and recompression and variants with multiple reheat and compression steps — were considered with varying heat-rejection subsystems — air-cooled, direct cooling tower, and indirect-loop cooling tower. Where appropriate, combustion air preheater inlet temperature was also varied. Through use of a multivariate nonlinear optimization design process that considers both performance and economic impacts, curves of minimum cost versus efficiency were generated for each sCO2 test case and combination of architecture and operational choices. These curves indicate both peak theoretical efficiency and suggest practical limits based on incremental cost versus performance. For a given test case, results for individual architectural and operational options give insight to cost and performance improvements from step-changes in system complexity and design, allowing down selection of candidate architectures. Optimized designs for each test case were then selected based on practical efficiency limits within the remaining candidate architectures and compared to the relevant baseline steam plant. sCO2 cycle flowsheets are presented for each optimized design.

Author(s):  
George Stamatellos ◽  
Antiopi-Malvina Stamatellou ◽  
Anestis I. Kalfas

Abstract The supercritical carbon dioxide (sCO2) cycle has emerged as a promising power cycle for various types of power conversion systems, based on its high thermal efficiency, (approaching 60%), small-size and compactness. The recompression Brayton cycle with sCO2 is based on high capacity regenerators processing a large amount of heat making their effectiveness critical for the overall cycle efficiency. Printed Circuit Heat Exchangers (PCHEs) are used in these cycles because of their high attainable effectiveness values. The design process for these regenerators is demanding, considering the peculiarities of variation of CO2 density and thermal properties near the critical temperature. On the other hand, a reduced computation time is necessary for the quick assessment of alternative design options. A hybrid design methodology for the high-temperature and the low-temperature recuperator (HTR and LTR) is presented in this paper, which employs 3D CFD conjugate heat transfer computation of the performance of a small two-channel module of the PCHE type. The results of the module computation are deployed in a 1D segmental method for the performance computation of the full heat exchanger’s channel length. Thus, the thermal effectiveness and pressure drop characteristics for the full heat exchanger are computed fast and with high accuracy. Application of the proposed methodology is carried out for the HTR and LTR computation in a recompression sCO2 Brayton cycle of a 600 MWth size power plant.


2013 ◽  
Vol 34 (3) ◽  
pp. 197-217
Author(s):  
Marian Trela ◽  
Roman Kwidziński ◽  
Dariusz Butrymowicz

Abstract The paper presents an efficiency analysis of two transcritical CO2 power cycles with regenerative heaters. For the proposed cycles, calculations of thermal efficiency are given for selected values of operating parameters. It was assumed that the highest working temperature and pressure are in the range from 600 to 700 °C and 40 to 50 MPa, respectively. The purpose of the calculations was optimization of the pressure and mass flows in the regenerative heaters to achieve maximum cycle efficiency. It follows that for the assumed upper CO2 parameters, efficiency of 51-54% can be reached, which is comparable to the efficiency of a supercritical advanced power cycle considered by Dostal.


Author(s):  
Mohammed Mahdi ◽  
Roman Popov ◽  
Igor Pioro

The vast majority of Nuclear Power Plants (NPPs) are equipped with water- and heavy-water-cooled reactors. Such NPPs have lower thermal efficiencies (30–36%) compared to those achieved at NPPs equipped with Advanced Gas-cooled Reactors (AGRs) (∼42%) and Sodium-cooled Fast Reactors (SFRs) (∼40%), and, especially, compared to those of modern advanced thermal power plants, such as combined cycle with thermal efficiencies up to 62% and supercritical-pressure coal-fired power plants — up to 55%. Therefore, NPPs with water- and heavy-water-cooled reactors are not very competitive with other power plants. Therefore, this deficiency of current water-cooled NPPs should be addressed in the next generation or Generation-IV nuclear-power reactors / NPPs. Very High Temperature Reactor (VHTR) concept / NPP is currently considered as the most efficient NPP of the next generation. Being a thermal-spectrum reactor, VHTR will use helium as a reactor coolant, which will be heated up to 1000°C. The use of a direct Brayton helium-turbine cycle was considered originally. However, technical challenges associated with the direct helium cycle have resulted in a change of the reference concept to indirect power cycle, which can be also a combined cycle. Along with the VHTR, Gas-cooled Fast Reactor (GFR) concept / NPP is also regarded as one of the most thermally efficient concept for the upcoming generation of NPPs. This concept was also originally thought to be with the direct helium power cycle. However, technical challenges have changed the initial idea of power cycle to a number of options including indirect Brayton cycle with He-N2 mixture, application of SuperCritical (SC)-CO2 cycles or combined cycles. The objective of the current paper is to provide the latest information on new developments in power cycles proposed for these two helium-cooled Generation-IV reactor concepts, which include indirect nitrogen-helium Brayton gas-turbine cycle, supercritical-pressure carbon-dioxide Brayton gas-turbine cycle, and combined cycles. Also, a comparison of basic thermophysical properties of helium with those of other reactor coolants, and with those of nitrogen, nitrogen-helium mixture and SC-CO2 is provided.


Author(s):  
Yuegeng Ma ◽  
Xuwei Zhang ◽  
Ming Liu ◽  
Jiping Liu

In order to pursue superior cycle efficiency and lower power generation cost for the CSP plants, two S-CO2–Brayton–cycle–based power cycles with different utilization methods of the residual heat recover of the top S-CO2 Brayton cycle (SCBC) are investigated to seek alternatives to the stand-alone S-CO2 cycle as the power block of concentrated solar power plants. The residual heat released by the top S-CO2 cycle are either utilized to drive a LiBr absorption chiller (AC) for further chilling of the CO2 fluids exiting the precooler before entering the main compressor inlet temperature or recovered by an organic rankine cycle (ORC) for generating electricity. Thermo-economic analysis and optimization are performed for the SCBC–AC and SCBC–ORC, respectively. The results show that the thermal and exergetic efficiencies of the SCBC–AC are comparable with those of the SCBC–ORC in low pressure ratio conditions (PR<2.7) but are apparently lower than SCBC–ORC when PR is over 2.7. The LCOE of the CSP plant integrated with SCBC–AC is more sensitive to the change of PR. The optimal PR to maximum the cycle efficiency or minimize the plant LCOE for the SCBC–ORC is higher than that for the SCBC–AC, while the optimal recuperator effectiveness to minimize the LCOE of CSP plant integrated with SCBC–ORC is lower than that of SCBC–AC. The optimization results show that the thermo-economic performance of the SCBC–AC is comparable to that of the SCBC–ORC. Significant ηex improvement and LCOE reduction can be obtained by both the two combined cycles relative to the stand-alone S-CO2 cycle. The maximal ηex improvements obtained by the SCBC–ORC and SCBC–AC are 6.83% and 4.12%, respectively. The maximal LCOE reduction obtained by the SCBC-ORC and SCBC–AC are 0.70 ȼ / (kW·h) and 0.60 ȼ / (kW·h), respectively.


Author(s):  
Anand Pavithran ◽  
Meeta Sharma ◽  
Anoop Kumar Shukla

The energy generation from the fossil fuels results to emit a tremendous amount of carbon dioxide into the atmosphere. The rise in the atmospheric carbon dioxide level is the primary reason for global warming and other climate change problems for which energy generation from renewable sources is an alternative solution to overcome this problem. However, the renewables sources are not as reliable for the higher amount of energy production and cannot fulfil the world’s energy demand; fossil fuels will continue to be consumed heavily for the energy generation requirements in the immediate future. The only possible solution to overcome the greenhouse gas emission from the power plant is by capturing and storing the carbon dioxide within the power plants instead of emitting it into the atmosphere. The oxy-fuel combustion power cycle with a carbon capture and storage system is an effective way to minimize emissions from the energy sectors. The oxy-fuel power cycle can reduce 90–99% of carbon dioxide emissions from the atmosphere. Moreover, the oxy-fuel power cycles have several advantages over the conventional power plants, these include high efficiency, lesser plant footprint, much easier carbon-capturing processes, etc. Because of these advantages, the oxy-fuel combustion power cycles capture more attention. In the last decades, the number of studies has risen exponentially, leading to many experimental and demonstrational projects under development today. This paper reviews the works related to oxy-fuel combustion power generation technologies with carbon capture and storage system. The cycle concepts and the advancements in this technology have been briefly discussed in this paper.


Author(s):  
Jan Syblik ◽  
Ladislav Vesely ◽  
Slavomir Entler ◽  
Vaclav Dostal ◽  
Jan Stepanek

Abstract Cooling system is one of the most important part of the power plants and cooling systems based on S-CO2 (Supercritical Carbon Dioxide) coolant seems nowadays perspective alternative to Helium and Rankine steam power cycles. Due to many advantages of S-CO2, these cooling systems are researched on many institutions and the results confirm that it should be successful for the future cooling systems design. One of the main objectives is comparison of the possible cooling mediums of DEMO2 (Demonstration power plant 2) with focusing on different power cycles with S-CO2. The First part of this article targets on comparison of three main coolants: steam, helium and S-CO2. The second part of this article focuses on the new software called CCOCS (Cooling Cycles Optimization Computational Software) which was developed on CTU in Prague. This software works on deeper optimization of the power cycles with various coolants and initial conditions. The third part describes advanced S-CO2 power cycles and enlarges past research, which was based on optimization of S-CO2 Brayton Simple power cycle and S-CO2 Re-compression power cycle both with recuperation and their usage in fusion and Fission energy engineering. It is possible to heighten thermodynamic efficiency of power cycle by changing the layout of the power cycle and the main objective of this paper is to compare four advanced layouts, describe the results of the optimization of these cycles and outline advantages and disadvantages of chosen optimized layouts.


Author(s):  
Jacob Delimont ◽  
Nathan Andrews ◽  
Lalit Chordia

Direct fired oxy-fuel combustion provides a promising method for heat addition into a supercritical carbon dioxide (sCO2) power cycle. Using this method of thermal energy input into the cycle allows for potentially higher fuel to bus bar cycle efficiency. In addition, the nature of the sCO2 power cycle lends itself to easy and efficient capture of 99% of the CO2 generated in the combustion process. sCO2 power cycles typically operate at pressures above 200 bar, and due to the high degree of recuperation found in these cycles, have a very high combustor inlet temperature. Past works have explored combustor inlet temperatures high enough to be in the autoignition regime. The inlet temperatures which will be explored in this work will be limited to 700°C, which will allows for very different combustor geometry than that which has been studied in the past. While this combustor inlet temperature is lower than that previously studied, when combined with the extremely high pressure, this poses several unique and difficult design challenges. In order to explore these unique design conditions a reliable and robust CFD solution method was developed. This reliable CFD solution methodology enables rapid iteration on various geometries. This paper will explore the CFD modeling setup and the assumptions which were made in the absence of well experimental data in this combustor regime. Exploration of methodology to account for possible variations in chemical kinetics due to the lack of validated kinetic models in the current literature will also be discussed. The results from the CFD runs will be discussed and the combustor design, and next steps to complete a detailed combustor design will also be discussed. This work will enable future work in the development of oxy-fuel combustors for direct fired sCO2 power. This promising technology enables the use of fossil fuels with up to 99% carbon capture, while maintaining an overall cycle efficiency competitive with natural gas combined cycle power plants.


2021 ◽  
Vol 22 ◽  
pp. 8
Author(s):  
Ali Akbar Golneshan ◽  
Hossain Nemati

It is required to sake methods to improve the power plant performance. Most of the proposed methods can be commenced only in the design stapes. However, the main question of this study is “What can we do to improve the performance of a running power plant?” The first answer to this question is that monitoring the site and periodic overhaul can keep a power plant in its acceptable condition. However, this answer is very qualitatively and needs more precise information like which parameters shall be monitored or which equipment needs more care in the overhaul. In this study, important parameters and the method of their calculations are introduced that must be monitored and compared. Six similar gas turbine power cycles were selected to be compared deeply during a day in this study. In this way, many data were collected every five minutes. Unlike most of the previous studies, this one concerns with maintenance policy and repair strategy. Results of this comparison lead to answer to these questions that which equipment needs special care? Finally, it was shown that in each unit, which equipment needs more attention and which one can be considered as a standard for the others.


Author(s):  
Vivek Pandey ◽  
Lakshminarayanan Seshadri ◽  
Jayesh Gupta ◽  
Ravishankar Mariayyah ◽  
Nagavally Lingappa Santhosh ◽  
...  

Abstract Supercritical Carbon dioxide (S-CO2) based Brayton power plants are being extensively researched as an alternative to steam-based power cycles due to high degree of recuperation favoured by higher heat capacities in supercritical state. Several studies revealed that PCHEs are suitable candidate for S-CO2 applications. Although, PCHEs have been well researched for various applications, there is very little information pertaining to the design or performance of PCHEs in S-CO2 applications. This paper presents a novel methodology for design of a PCHE as gas cooler for a S-CO2 power block. In the first part, a thermal resistance network (TRN) model developed using MATLAB is used for full scale modelling of gas cooler. The geometrical information obtained from TRN model is used to optimize the overall footprint. In the second part, the MATLAB code coupled with a 1-D design tool (Flownex SE) and an optimization software; Isight, is used to optimize the inlet-exit manifold based on flow admittance approach. The 1-D design tool discretizes the inlet-exit manifolds to achieve optimum combination of flow admittances which facilitates identical channel mass flow rate and inlet pressure across each channel/stack ensuring minimum overall pressure drop. In the current paper a case study for a 10 MW PCHE based gas cooler used in a simple recuperated S-CO2 cycle rejecting heat to ambient at 45 °C and 90 bar, is presented. The gas cooler uses water as the primary heat transfer maintained at 4 bar pressure to facilitate single phase heat transfer. Pinch temperature of 5 K is assumed to exist in all heat transfer surfaces. The MATLAB program is coupled with REFPROP property data base to retrieve the thermodynamic properties across all the nodes.


2021 ◽  
Author(s):  
Sandeep R. Pidaparti ◽  
Charles W. White ◽  
Nathan T. Weiland

Abstract Indirect-fired supercritical CO2 (sCO2) power cycles are being explored as an attractive alternative to steam Rankine cycles for a variety of heat sources including fossil, concentrated solar power (CSP), nuclear, waste heat etc. Therefore, understanding their performance and cost potential is important for commercialization of the technology. This study presents the techno-economic global optimization results of coal-fired utility scale power plants based on indirect sCO2 power cycles with and without carbon capture and storage (CCS). Four power cycle configurations are considered for optimization – recompression cycle (RC) with and without turbine reheat and partial cooling cycle (PCC) with and without turbine reheat. Several design variables are identified for each power cycle configuration and these design variables are optimized to minimize the levelized cost of electricity (LCOE) for each plant. The optimization design variables included parameters such as turbine inlet temperatures and pressure, sCO2 cooler outlet temperatures, recuperator approach temperatures and pressure drops etc. The optimization is conducted using automated derivative free optimization algorithms available under NETL’s Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) platform. For sCO2 power plants both with and without CCS, recompression cycle with reheat (RC with reheat) has the highest plant efficiency and lowest LCOE among the considered power cycle configurations. For plants with CCS, the RC with reheat configuration offered 8 percentage points higher plant efficiency (HHV basis) and 14.6% lower LCOE compared to a state-of-the-art (SOA) PC-fired supercritical steam Rankine plant with CCS. For plants without CCS, the RC with reheat configuration offered 4.7 percentage points higher plant efficiency and 7% lower LCOE compared to a SOA PC-fired supercritical steam Rankine plant without CCS.


Sign in / Sign up

Export Citation Format

Share Document