fluidized bed combustor
Recently Published Documents


TOTAL DOCUMENTS

693
(FIVE YEARS 51)

H-INDEX

33
(FIVE YEARS 4)

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122133
Author(s):  
Xiwei Ke ◽  
Markus Engblom ◽  
Hairui Yang ◽  
Anders Brink ◽  
JunFu Lyu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Erdiwansyah ◽  
Mahidin ◽  
Husni Husin ◽  
Muhammad Faisal ◽  
Muhtadin ◽  
...  

Investigation of combustion temperature through experiments with a wide range of fuels, both solid and liquid, is continuously being conducted by scientists around the world, while the measurement of heat transfer rate can be analyzed when the combustion process occurs. Previous research has generally been conducted using liquefied gas, fossil fuels, and alcohol additives. Specifically, the research in this work investigated the convection heat rate and combustion temperature through the modification of the perforated plate. The experiment was conducted in the fluidized-bed combustor (FBC) fuel chamber using solid waste fuel of oil palm biomass. Measurements were performed at four different points using the HotTemp HT-306 Digital Thermometer. The results of the experiment showed that the convection heat rate in measurement one (M-I) reached 8.258 W/m2 for palm kernel shell (PKS) fuel. Meanwhile, in measurement two (M-II), the convection rate of 7.392 W/m2 was produced by oil palm midrib (OPM) fuel. The highest combustion temperature was recorded with OPM fuel (884°C) at M-I. However, the combustion temperature of the PKS combustion process is higher at 896°C but shows a less good trend than OPM. Overall, the measurement results of the three types of fuel used to modify the perforated plate applied in the FBC fuel chamber are excellent. It can be proven that the fuel is put into the combustion chamber with nothing left.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1489 ◽  
Author(s):  
Erdiwansyah ◽  
Mahidin ◽  
Husni Husin ◽  
Nasaruddin ◽  
Muhtadin ◽  
...  

Combustion efficiency is one of the most important parameters especially in the fluidized-bed combustor. Investigations into the efficiency of combustion in fluidized-bed combustor fuels using solid biomass waste fuels in recent years are increasingly in demand by researchers around the world. Specifically, this study aims to calculate the combustion efficiency in the fluidized-bed combustor. Combustion efficiency is calculated based on combustion results from the modification of hollow plates in the fluidized-bed combustor. The modified hollow plate aims to control combustion so that the fuel incorporated can burn out and not saturate. The combustion experiments were tested using palm oil biomass solid waste fuels such as palm kernel shell, oil palm midrib, and empty fruit bunches. The results of the measurements showed that the maximum combustion temperature for the palm kernel shell fuel reached 863 °C for M1 and 887 °C for M2. The maximum combustion temperature measurements for M1 and M2 from the oil palm midrib fuel testing reached 898 °C and 858 °C, respectively, while the maximum combustion temperature for M1 and M2 from the empty fruit bunches fuel was 667 °C and M2 847 °C, respectively. The rate of combustion efficiency with the modification of the hole plate in the fluidized-bed combustor reached 96.2%. Thermal efficiency in fluidized-bed combustors for oil palm midrib was 72.62%, for PKS was 70.03%, and for empty fruit bunches was 52.43%. The highest heat transfer rates for the oil palm midrib fuel reached 7792.36 W/m2, palm kernel shell 7167.38 W/m2, and empty fruit bunches 5127.83 W/m2. Thus, the modification of the holed plate in the fluidized-bed combustor chamber showed better performance of the plate than without modification.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Brian Ondari ◽  
Zachary Siagi ◽  
Anil Kumar

Coal reserves at Mui and Taru in Kitui and Kilifi counties in Kenya are estimated to provide over 400 million tons. Being new discoveries, their properties were investigated using the ASTM standards, while the combustion characteristics were studied in a fluidized bed combustor (FBC). Proximate analyses of the Mui1, Mui2, and Taru coal samples were as follows: moisture content 3.75, 5.48, and 3.53%; volatile matter 59.25, 58.05, and 55.10%; ash content 9.25, 11.48, and 24.63%; and fixed carbon 27.80, 25.00, and 16.75%, respectively. Ultimate analysis for Mui1, Mui2, and Taru coal samples is as follows: sulphur wt.% 1.94, 1.89, and 1.07; carbon 65.68, 60.98, and 51.10%; hydrogen 5.97, 5.70, and 5.09%; nitrogen 0.92, 0.94, and 1.00%; and oxygen 11.62, 12.33, and 11.13%, respectively. Temperature–weight loss analysis showed that for Mui and Taru basin coal, devolatilization starts at 200°C and 250°C, and combustion was complete at 750°C and 650°C, respectively. The maximum temperature obtained in FBC was 855°C at 700 mm height, just above the point of fuel feed, while the minimum was 440°C at height of 2230 mm. Maximum pressure drop was 1.02 mbars at 150 mm, while minimum was 0.67 mbars at 700 mm from the base. Gross calorific values were Mui1 coal, 27090 kJ/kg (grade A), Mui2 coal, 25196 kJ/kg (grade B), and the Taru coal, 21016 kJ/kg (grade C). Flue gas analysis for Taru and Mui coal gave hydrogen sulfide as 20 ppm and 6 ppm, maximum carbon monoxide of 2000 ppm at 600°C, and a decrease in oxygen as combustion progressed to a minimum of 15%, followed by an increase to 20.3%, suggesting depletion of coal. Based on the findings, the coal samples were suitable for commercial use.


Sign in / Sign up

Export Citation Format

Share Document