AMBIGUITIES IN IPS G-MAPS: 3D NUMERICAL SIMULATION RESULTS

1992 ◽  
pp. 169-172 ◽  
Author(s):  
T.R. Detman ◽  
M. Dryer ◽  
H. Leinbach
2007 ◽  
Vol 558-559 ◽  
pp. 1201-1206 ◽  
Author(s):  
Mihaela Teodorescu ◽  
Patrice Lasne ◽  
Roland E. Logé

The present work concerns the simulation of metallurgical evolutions in 3D multi-pass forming processes. In this context, the analyzed problem is twofold. One point refers to the management of the microstructure evolution during each pass or each inter-pass period and the other point concerns the management of the multi-pass aspects (different grain categories, data structure). In this framework, a model is developed and deals with both aspects. The model considers the microstructure as a composite made of a given (discretized) number of phases which have their own specific properties. The grain size distribution and the recrystallized volume fraction distribution of the different phases evolve continuously during a pass or inter-pass period. With this approach it is possible to deal with the heterogeneity of the microstructure and its evolution in multi-pass conditions. Both dynamic and static recrystallization phenomena are taken into account, with typical Avrami-type equations. The present model is implemented in the Finite Element code FORGE2005®. 3D numerical simulation results for a multi-pass process are presented.


2011 ◽  
Vol 299-300 ◽  
pp. 1012-1015
Author(s):  
Yun Chuan Yang ◽  
Xu Wang

Based on the 3D plane impact and 2D MCA numerical simulation, the 3D ANSYS/LS-DYNA software is applied to conduct numerical simulations on two kinds of impact breaking process of a glass ball, during which spallation phenomenon occur. The Von Misses stress of each node changes with the time as the result of the stress waves spreading, reflecting and overlapping within the material. The stereograms and profiles from the simulation results reveal that the stress of each node changes with the time. By comparing the simulation results of plane impact and 2D point impact, differences and similarities between these processes are illustrated in this paper, which reflects the complexity of mechanics in the processes.


2012 ◽  
Vol 152-154 ◽  
pp. 266-270 ◽  
Author(s):  
Ying Tao Ding ◽  
Ru Qing Liu ◽  
Ri Na Su

Based on standard k-ε turbulent, PISO algorithm and the dynamic mesh model, numerical simulation of the 3D, viscous, unsteady compressible gas synthetic jet model was proposed. Two kinds of diaphragm boundary conditions, Helmholtz frequency characteristics and other factors affecting the performance of the 3D synthetic jet were discussed. Simulation results show that the dynamic mesh diaphragm boundary condition is more consistent with the experimental results and the theoretical results, which demonstrates the rationality of the dynamic mesh 3D compressible gas model.


2006 ◽  
Vol 65 (16) ◽  
pp. 1533-1546
Author(s):  
Yu. Ye. Gordienko ◽  
S. A. Zuev ◽  
V. V. Starostenko ◽  
V. Yu. Tereshchenko ◽  
A. A. Shadrin

Author(s):  
Jialei Song ◽  
Yong Zhong ◽  
Ruxu Du ◽  
Ling Yin ◽  
Yang Ding

In this paper, we investigate the hydrodynamics of swimmers with three caudal fins: a round one corresponding to snakehead fish ( Channidae), an indented one corresponding to saithe ( Pollachius virens), and a lunate one corresponding to tuna ( Thunnus thynnus). A direct numerical simulation (DNS) approach with a self-propelled fish model was adopted. The simulation results show that the caudal fin transitions from a pushing/suction combined propulsive mechanism to a suction-dominated propulsive mechanism with increasing aspect ratio ( AR). Interestingly, different from a previous finding that suction-based propulsion leads to high efficiency in animal swimming, this study shows that the utilization of suction-based propulsion by a high- AR caudal fin reduces swimming efficiency. Therefore, the suction-based propulsive mechanism does not necessarily lead to high efficiency, while other factors might play a role. Further analysis shows that the large lateral momentum transferred to the flow due to the high depth of the high- AR caudal fin leads to the lowest efficiency despite the most significant suction.


Sign in / Sign up

Export Citation Format

Share Document