The Development of Mass Spectrometry in the Earth and Planetary Sciences

Author(s):  
Keith A. Nier
Keyword(s):  
Radiocarbon ◽  
1992 ◽  
Vol 34 (3) ◽  
pp. 447-451 ◽  
Author(s):  
David Elmore ◽  
F. A. Rickey ◽  
P. C. Simms ◽  
M. E. Lipschutz ◽  
K. A. Mueller ◽  
...  

A new facility for accelerator mass spectrometry has been established at Purdue University. First results have been obtained for 10Be and 36C1, and several internal research projects have been initiated. Plans are to become a national AMS facility to serve the Earth and planetary science communities for the full range of cosmogenic radionuclides.


2016 ◽  
Author(s):  
Benjamin W. Johnson ◽  
Natashia Drage ◽  
Jody Spence ◽  
Nova Hanson ◽  
Rana El-Sabaawi ◽  
...  

Abstract. Long viewed as a mostly noble, atmospheric species, recent work demonstrates that nitrogen in fact cycles throughout the Earth system, including the atmosphere, biosphere, oceans, and solid Earth. Despite this new-found behaviour, more thorough investigation of N in geologic materials is limited due to its low concentration (1 to 10 s ppm) and difficulty in analysis. In addition, N can exist in multiple species (NO3−, NH4+, N2, organic-N), and determining which species is actually quantified can be difficult. In rocks and minerals, NH4+ is the most stable form of N over geologic time scales. As such, techniques designed to measure NH4+ can be particularly useful. We measured a number of geochemical rock standards using three different techniques: mass spectrometry, colourimetry, and fluorometry. The fluorometry approach is a novel adaptation of a technique commonly used in biologic science, applied herein to geologic NH4+. Briefly, NH4+ can be quantified by HF-dissolution, neutralization, addition of a fluorescing reagent, and analysis on a standard fluorometer. We reproduce published values for several rock standards (BCR-2, BHVO-2, and G-2), especially if an additional distillation step is performed. While it is difficult to assess quality of each method, due to lack of international geologic N standards, fluorometry appears better suited to analyzing mineral-bound NH4+ than mass spectrometry, and is a simpler, quicker alternative to colourimetry. To demonstrate a potential application of fluorometry, we calculated a continental crust N budget based on new measurements. We used glacial tills as a proxy for upper crust and analyzed several poorly constrained rock types (volcanics, mid-crustal xenoliths) to determine that the continental crust contains ∼ 2 × 1018 kg N. This estimate is consistent with recent budget estimates, and shows that fluorometry is appropriate for large-scale questions where high sample throughput is helpful. Lastly, we report the first δ15N values of six rock standards: BCR-2 (1.05 ± 0.4 ‰), BHVO-2 (−0.3 ± 0.2 ‰), G-2 (1.23 ± 1.32 ‰), LKSD-4 (3.59 ± 0.1 ‰), Till-4 (6.33 ± 0.1 ‰), and SY-4 (2.13 ± 0.5 ‰). The need for international geologic N standards is crucial for further investigation of the Earth system N cycle, and we suggest that existing rock standards may be suited to this need.


Solid Earth ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 307-318 ◽  
Author(s):  
Benjamin W. Johnson ◽  
Natashia Drage ◽  
Jody Spence ◽  
Nova Hanson ◽  
Rana El-Sabaawi ◽  
...  

Abstract. Long viewed as a mostly noble, atmospheric species, recent work demonstrates that nitrogen in fact cycles throughout the Earth system, including the atmosphere, biosphere, oceans, and solid Earth. Despite this new-found behaviour, more thorough investigation of N in geologic materials is limited due to its low concentration (one to tens of parts per million) and difficulty in analysis. In addition, N can exist in multiple species (NO3−, NH4+, N2, organic N), and determining which species is actually quantified can be difficult. In rocks and minerals, NH4+ is the most stable form of N over geologic timescales. As such, techniques designed to measure NH4+ can be particularly useful.We measured a number of geochemical rock standards using three different techniques: elemental analyzer (EA) mass spectrometry, colorimetry, and fluorometry. The fluorometry approach is a novel adaptation of a technique commonly used in biologic science, applied herein to geologic NH4+. Briefly, NH4+ can be quantified by HF dissolution, neutralization, addition of a fluorescing reagent, and analysis on a standard fluorometer. We reproduce published values for several rock standards (BCR-2, BHVO-2, and G-2), especially if an additional distillation step is performed. While it is difficult to assess the quality of each method, due to lack of international geologic N standards, fluorometry appears better suited to analyzing mineral-bound NH4+ than EA mass spectrometry and is a simpler, quicker alternative to colorimetry.To demonstrate a potential application of fluorometry, we calculated a continental crust N budget based on new measurements. We used glacial tills as a proxy for upper crust and analyzed several poorly constrained rock types (volcanics, mid-crustal xenoliths) to determine that the continental crust contains  ∼  2  ×  1018 kg N. This estimate is consistent with recent budget estimates and shows that fluorometry is appropriate for large-scale questions where high sample throughput is helpful.Lastly, we report the first δ15N values of six rock standards: BCR-2 (1. 05  ±  0. 4 ‰), BHVO-2 (−0. 3  ±  0. 2 ‰), G-2 (1. 23  ±  1. 32 ‰), LKSD-4 (3. 59  ±  0. 1 ‰), Till-4 (6. 33  ±  0. 1 ‰), and SY-4 (2. 13  ±  0. 5 ‰). The need for international geologic N standards is crucial for further investigation of the Earth system N cycle, and we suggest that existing rock standards may be suited to this need.


1984 ◽  
Author(s):  
B.R. Doe ◽  
Louis Brown ◽  
David Elmore ◽  
Gregory Herzog ◽  
Theodore Kruse ◽  
...  

1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


Sign in / Sign up

Export Citation Format

Share Document