scholarly journals Carbon dioxide sequestration of fly ash alkaline based mortars with recycled aggregates and different sodium hydroxide concentrations

Author(s):  
Mohammad Mastali ◽  
Zahra Abdollahnejad ◽  
Fernando Pacheco-Torgal
2021 ◽  
Vol 2070 (1) ◽  
pp. 012241
Author(s):  
Angitha K Viswanath ◽  
K B Anand

Abstract Climate change is one of the most important environmental problems that our planet Earth is facing. This is due to the increased emission of greenhouse gases such as carbon dioxide. Concrete, the most consumed material in the construction industry is reported to be responsible for about 8% of worldwide carbon dioxide emissions. The manufacturing of ordinary Portland cement is both resource and energy-intensive and is accountable for 1.35 billion tons of carbon dioxide emitted annually. Hence potential alternative to Portland cement widely recognized is the adoption of alkali-activated cement. Alkali-activated cement commonly utilizes industrial by-products such as fly ash, GGBS, etc. along with alkali activators such as sodium silicate and sodium hydroxide. The literature review indicates that the environmental impact due to the usage of Portland cement can be reduced by the adoption of alkali-activated cement. However, the manufacture of alkali activators is likely to contribute to the emission to the environment. In addition, the heat curing commonly adopted during the production of concrete to activate the alkalis might also have a bearing. Hence a comparative study using the lifecycle assessment (LCA) method is carried out to assess the impact due to the production of alkali-activated cement concrete using supplementary cementitious materials (SCM) fly ash and GGBS with varying proportions of alkali activators (sodium silicate and sodium hydroxide). Data is extracted from the published literature corresponding to two different compressive strength ranges of OPC concrete and alkali-activated cement concretes that have utilized four varying proportions of alkali activator ratios. It is then analyzed by the ‘cradle to gate’ approach using LCA software SimaPro. The impact assessment is done using the ReCiPe 2016 method. A comparison of results and their interpretation is done based on its compressive strength ranges, the alkali activator ratios, and the effect due to change in the SCMs utilized.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2714 ◽  
Author(s):  
Ahmad Assi ◽  
Stefania Federici ◽  
Fabjola Bilo ◽  
Annalisa Zacco ◽  
Laura E. Depero ◽  
...  

Mineral carbonation, involving reactions of alkaline earth oxides with CO2, has received great attention, as a potential carbon dioxide sequestration technology. Indeed, once converted into mineral carbonate, CO2 can be permanently stored in an inert phase. Several studies have been focalized to the utilization of industrial waste as a feedstock and the reuse of some by-products as possible materials for the carbonation reactions. In this work municipal solid waste incineration fly ash and other ashes, as bottom ash, coal fly ash, flue gas desulphurization residues, and silica fume, are stabilized by low-cost technologies. In this context, the CO2 is used as a raw material to favor the chemical stabilization of the wastes, by taking advantage of the pH reduction. Four different stabilization treatments at room temperature are performed and the carbonation reaction evaluated for three months. The crystalline calcium carbonate phase was quantified by the Rietveld analysis of X-ray diffraction (XRD) patterns. Results highlight that the proposed stabilization strategy promotes CO2 sequestration, with the formation of different calcium carbonate phases, depending on the wastes. This new sustainable and promising technology can be an alternative to more onerous mineral carbonation processes for the carbon dioxide sequestration.


Sign in / Sign up

Export Citation Format

Share Document