Maximum power from solar energy

Author(s):  
Stanisław Sieniutycz ◽  
Jacek Jeżowski
Keyword(s):  
2015 ◽  
Vol 787 ◽  
pp. 227-232 ◽  
Author(s):  
L.A. Arun Shravan ◽  
D. Ebenezer

In recent years there has been a growing attention towards use of solar energy. Advantages of photovoltaic (PV) systems employed for harnessing solar energy are reduction of greenhouse gas emission, low maintenance costs, fewer limitations with regard to site of installation and absence of mechanical noise arising from moving parts. However, PV systems suffer from relatively low conversion efficiency. Therefore, maximum power point tracking (MPPT) for the solar array is essential in a PV system. The nonlinear behaviour of PV systems as well as variations of the maximum power point with solar irradiance level and temperature complicates the tracking of the maximum power point. This paper reviews various MPPT methods based on three categories: offline, online and hybrid methods. Design of a PV system in a encoding environment has also been reviewed here. Furthermore, different MPPT methods are discussed in terms of the dynamic response of the PV system to variations in temperature and irradiance, attainable efficiency, and implementation considerations.


2013 ◽  
Vol 339 ◽  
pp. 533-538
Author(s):  
Gang Wang

Aiming at the low generating efficiency of the current solar energy generating system, solar energy maximum power point tracking control system based on STC89C52 is designed and made. The photoelectric detection and tracking is adopted as the control mode in the system. By using stepping motor as driving mechanism, comprehensive trace of the sun is realized by controlling the movement of tracking mechanism in the horizontal and pitching directions. Based on this, real-time detection of wind velocity and change of wind direction is realized by wind velocity and direction transducer which is equipped on the tracking mechanism, which makes the system automatically avoid the typhoon above level 8 to weaken the damage to panel by the storm. The experiment results of model machine indicate that the system has reliable performance which can satisfy the need of auto-solar track, it can also make the panel orient towards east again after darkness to realize daily circular run and it is of relatively high practical value.


Author(s):  
Ching-Cheng Yang ◽  
Paul C.-P. Chao ◽  
Rajeev Kumar Pandey

In this paper a new on-chip 2nd generation solar energy harvesting DC-DC converter has been proposed for a battery-less Internet of Things (IoTs) Devices. The propose circuit is design to maximize the transfer efficiency and stability as well as enough high power supply to the back-end loads. Altogether the proposed circuit consists of a cross-coupled charge pump, a maximum power point tracking (MPPT) circuit, a timing control circuit and regulator. The range of input voltage is from 0.5V to 3V. Required boosted output voltage is in the range of 1V to 3.3V. The maximum transfer efficiency is more than 60% and the maximum throughout power is 200μW. A gated clock frequency modulation circuit has been designed and employed in the maximum power point tracking (MPPT) unit to lock the input resistance of the charge pump. In addition, to provide a stable voltage to the load a low dropout (LDO) regulator circuit is used. The experimental results show that the maximum power conversion efficiency (PCE) is 78% at 52μW input power condition.


2014 ◽  
Vol 925 ◽  
pp. 505-509 ◽  
Author(s):  
Intan Rahayu Ibrahim ◽  
Ahmad Maliki Omar ◽  
Zakaria Hussain

The dual-power PV-grid system was introduced to manipulate the lower tariff rate at off-peak period and to reduce the capital installation cost of PV energy system. The power converter in the PV energy system is used to process solar energy captured by PV modules into usable electrical energy. In the dual-power PV-grid system, the power converter component is consists of a boost regulator to boost and regulate PV outputs to fixed voltage of 240V, 50Hz, a maximum power point tracker (MPPT) to derive maximum power from PV panels and a three operation modes of the battery converter to regulate charging current/discharging current under various PV output and load variation. In this project, a reduced switch and increased level of cascaded H-bridge multilevel inverter was introduced to convert the direct current (DC) output of the solar energy to alternating current (AC) signal to supply an AC load or to be integrated to the grid system. By adapting selective harmonic elimination (SHE) switching strategy, the inverter produces 21 levels of stepped sinusoidal output signal with resultant total harmonics distortion (THD) of 3.90%.


Sign in / Sign up

Export Citation Format

Share Document