Design and Realization of Solar Energy Maximum Power Point Automatic Tracking System

2013 ◽  
Vol 339 ◽  
pp. 533-538
Author(s):  
Gang Wang

Aiming at the low generating efficiency of the current solar energy generating system, solar energy maximum power point tracking control system based on STC89C52 is designed and made. The photoelectric detection and tracking is adopted as the control mode in the system. By using stepping motor as driving mechanism, comprehensive trace of the sun is realized by controlling the movement of tracking mechanism in the horizontal and pitching directions. Based on this, real-time detection of wind velocity and change of wind direction is realized by wind velocity and direction transducer which is equipped on the tracking mechanism, which makes the system automatically avoid the typhoon above level 8 to weaken the damage to panel by the storm. The experiment results of model machine indicate that the system has reliable performance which can satisfy the need of auto-solar track, it can also make the panel orient towards east again after darkness to realize daily circular run and it is of relatively high practical value.

2015 ◽  
Vol 787 ◽  
pp. 227-232 ◽  
Author(s):  
L.A. Arun Shravan ◽  
D. Ebenezer

In recent years there has been a growing attention towards use of solar energy. Advantages of photovoltaic (PV) systems employed for harnessing solar energy are reduction of greenhouse gas emission, low maintenance costs, fewer limitations with regard to site of installation and absence of mechanical noise arising from moving parts. However, PV systems suffer from relatively low conversion efficiency. Therefore, maximum power point tracking (MPPT) for the solar array is essential in a PV system. The nonlinear behaviour of PV systems as well as variations of the maximum power point with solar irradiance level and temperature complicates the tracking of the maximum power point. This paper reviews various MPPT methods based on three categories: offline, online and hybrid methods. Design of a PV system in a encoding environment has also been reviewed here. Furthermore, different MPPT methods are discussed in terms of the dynamic response of the PV system to variations in temperature and irradiance, attainable efficiency, and implementation considerations.


Author(s):  
Bharat Khandelwal

Solar energy is a potential energy source in India. A photovoltaic is a efficient way to cure the energy in a huge amount and keep to gather that kind of energy for future, and the PV must have good efficiency. The maximum power point tracking (MPPT) is a process that tracks one maximum power point from array input, in which the ratio varies between the voltage and current delivered to get the most power it can. Several algorithms have been developed for extracting maximum power. To increase its efficiency many MPPT techniques are used. Incremental conductance is one of the important techniques in this system and because of its higher steady-state accuracy and environmental adaptability it is a widely implemented tracked control strategy. This research was aimed to explore the performance of a maximum power point tracking system that implements the Incremental Conductance (IC) method. The IC algorithm was designed to control the duty cycle of the Buck-Boost converter and to ensure the MPPT work at its maximum efficiency. From the simulation, the IC method shows better performance and also has a lower oscillation.


Author(s):  
Ching-Cheng Yang ◽  
Paul C.-P. Chao ◽  
Rajeev Kumar Pandey

In this paper a new on-chip 2nd generation solar energy harvesting DC-DC converter has been proposed for a battery-less Internet of Things (IoTs) Devices. The propose circuit is design to maximize the transfer efficiency and stability as well as enough high power supply to the back-end loads. Altogether the proposed circuit consists of a cross-coupled charge pump, a maximum power point tracking (MPPT) circuit, a timing control circuit and regulator. The range of input voltage is from 0.5V to 3V. Required boosted output voltage is in the range of 1V to 3.3V. The maximum transfer efficiency is more than 60% and the maximum throughout power is 200μW. A gated clock frequency modulation circuit has been designed and employed in the maximum power point tracking (MPPT) unit to lock the input resistance of the charge pump. In addition, to provide a stable voltage to the load a low dropout (LDO) regulator circuit is used. The experimental results show that the maximum power conversion efficiency (PCE) is 78% at 52μW input power condition.


Sign in / Sign up

Export Citation Format

Share Document