COVALENT TRANSITION-STATE AFFINITY CHROMATOGRAPHY OF TRYPSIN-LIKE PROTEASES

Author(s):  
Richard M. Schultz ◽  
Arun H. Patel ◽  
Ahmad Ahsan

Author(s):  
Arun H. Patel ◽  
Ahmad Ahsan ◽  
B.P. Suthar ◽  
Richard M. Schultz


2017 ◽  
Vol 437 ◽  
pp. 140-149 ◽  
Author(s):  
Anh T. Tran ◽  
Jacob T. Rapp ◽  
Kenneth M. Nicholas




Author(s):  
Eduardo A. Kamenetzky ◽  
David A. Ley

The microstructure of polyacrylonitrile (PAN) beads for affinity chromatography bioseparations was studied by TEM of stained ultramicrotomed thin-sections. Microstructural aspects such as overall pore size distribution, the distribution of pores within the beads, and surface coverage of functionalized beads affect performance properties. Stereological methods are used to quantify the internal structure of these chromatographic supports. Details of the process for making the PAN beads are given elsewhere. TEM specimens were obtained by vacuum impregnation with a low-viscosity epoxy and sectioning with a diamond knife. The beads can be observed unstained. However, different surface functionalities can be made evident by selective staining. Amide surface coverage was studied by staining in vapor of a 0.5.% RuO4 aqueous solution for 1 h. RuO4 does not stain PAN but stains, amongst many others, polymers containing an amide moiety.



2003 ◽  
Vol 70 ◽  
pp. 213-220 ◽  
Author(s):  
Gerald Koelsch ◽  
Robert T. Turner ◽  
Lin Hong ◽  
Arun K. Ghosh ◽  
Jordan Tang

Mempasin 2, a ϐ-secretase, is the membrane-anchored aspartic protease that initiates the cleavage of amyloid precursor protein leading to the production of ϐ-amyloid and the onset of Alzheimer's disease. Thus memapsin 2 is a major therapeutic target for the development of inhibitor drugs for the disease. Many biochemical tools, such as the specificity and crystal structure, have been established and have led to the design of potent and relatively small transition-state inhibitors. Although developing a clinically viable mempasin 2 inhibitor remains challenging, progress to date renders hope that memapsin 2 inhibitors may ultimately be useful for therapeutic reduction of ϐ-amyloid.



1999 ◽  
Vol 97 (8) ◽  
pp. 967-976 ◽  
Author(s):  
M. Garay Salazar, J. M. Orea Rocha, A.




1975 ◽  
Vol 33 (03) ◽  
pp. 573-585 ◽  
Author(s):  
Masahiro Iwamoto

SummaryInteractions between tranexamic acid and protein were studied in respect of the antifibrinolytic actions of tranexamic acid. Tranexamic acid did neither show any interaction with fibrinogen or fibrin, nor was incorporated into cross-linked fibrin structure by the action of factor XIII. On the other hand, tranexamic acid bound to human plasmin with a dissociation constant of 3.5 × 10−5 M, which was very close to the inhibition constant (3.6 × 10−5 M) for this compound in inhibiting plasmin-induced fibrinolysis. The binding site of tranexamic acid on plasmin was not the catalytic site of plasmin, because TLCK-blocked plasmin also showed a similar affinity to tranexamic acid (the dissociation constant, 2.9–4.8 × 10−5 M).In the binding studies with the highly purified plasminogen and TLCK-plasmin preparations which were obtained by affinity chromatography on lysine-substituted Sepharose, the molar binding ratio was shown to be 1.5–1.6 moles tranexamic acid per one mole protein.On the basis of these and other findings, a model for the inhibitory mechanism of tranexamic acid is presented.



1981 ◽  
Vol 45 (01) ◽  
pp. 060-064 ◽  
Author(s):  
M L Kavanagh ◽  
C N Wood ◽  
J F Davidson

SummaryNine human antibodies to factor VIII were isolated from haemophilic plasmas by affinity chromatography and gel filtration and six were subsequently subjected to immunological characterization. Three partially purified preparations were similarly characterized. Eight of the antibodies were characterized as being exclusively IgG and one preparation was found to contain IgM. Seven of the antibodies contained only a single light chain type, four being of type lambda and three of type kappa. Two antibody preparations contained both kappa and lambda light chains. In four of the preparations, only a single heavy chain sub-class could be demonstrated, three of IgG3 and one of IgG4. Of the remainder, three were a mixture of IgG3 and IgG4 sub-classes and one contained both IgG2 and IgG4. IgG sub-classification could not be achieved with the IgM-containing preparation. These results demonstrate a restricted heterogeneity of light and heavy chains in human antibodies to factor VIII.



Sign in / Sign up

Export Citation Format

Share Document