Sturm-Liouville Eigenvalue Problems and Generalized Fourier Series

Author(s):  
George A. Articolo

In recent communications to the Society, I have confined myself largely to the Theory of Fourier Series, partly because much seemed to me still to require doing in this subject, partly because I believed its thorough investigation to be the natural preparation for the study of other series of normal functions. It has, indeed, been known for some time that the behaviour of, for instance, series of Sturm-Liouville functions exactly corresponds to that of Fourier series. The introduction that I have recently made into Analysis of what I have called restricted Fourier series enables us to notably extend the range of such analogies. I propose in the present communication to illustrate this remark with reference to series of Legendre coefficients. Whereas Fourier series may be said to be “naturally unrestricted,” in virtue of the fact that the convergence of the integrated series to an integral necessarily involves the tendency towards zero of its own general term, so that the consideration of the more general type of series does not at once suggest itself, Legendre series may be said to come into being “restricted,” even when the coefficients are expressible in what may be called the Fourier form by means of integrals involving Legendre’s coefficients. In other words, such series correspond precisely to restricted Fourier series, instead of to ordinary Fourier series like the analogous series of Sturm-Liouville functions.


2020 ◽  
Vol 28 (4) ◽  
pp. 82-94
Author(s):  
V.F. Kanushin ◽  
◽  
I.G. Ganagina ◽  
D.N. Goldobin ◽  
◽  
...  

The article presents two methods of modeling discrete heights of a quasigeoid on a local area of the earth’s surface using a gen-eralized Fourier series. The first method is based on modeling the characteristics of the earth’s gravitational field on a plane and involves the use of a two-dimensional Fourier transform by an orthonormal system of trigonometric functions. The second method consists in the expansion of the quasigeoid heights in a Fourier series by an orthonormal system of spherical functions on a local area of the earth’s surface. The errors of approxima-tion of the obtained discrete values of the quasigeoid heights on the local territory are analyzed. It is shown that with the modern computing technology, the most accurate and technologically simple way to model the quasigeoid heights on local areas is to expand them into a Fourier series by an orthonormal system of spherical functions.


2019 ◽  
Vol 25 (4) ◽  
pp. 961-967
Author(s):  
Yan-Ping Zhao ◽  
Lin Li ◽  
Ming Jin

In this paper, stability of the neutral equilibrium and initial post-buckling of a column with a rotational end restraint is analyzed based on Koiter initial post-buckling theory. The potential energy functional is written in terms of the angle. By the generalized Fourier series of the disturbance angle, it is proved that the second-order variation of the potential energy is semi-positive definite at the neutral equilibrium. The stability of the neutral equilibrium is determined by the sign of the fourth-order variation for the buckling mode. For all values of the stiffness of the rotational end restraint, the neutral equilibrium is stable and the bifurcation equilibrium is upward in the initial post-buckling.


Sign in / Sign up

Export Citation Format

Share Document