Macronuclear Development, Ciliates

Author(s):  
F. Jönsson ◽  
H.J. Lipps
1988 ◽  
Vol 8 (11) ◽  
pp. 5043-5046
Author(s):  
J P Kile ◽  
H D Love ◽  
C A Hubach ◽  
G A Bannon

The expression of Tetrahymena surface proteins serotype H3 (SerH3) and serotype T (SerT) is under environmental regulation. SerH3 is expressed when cells are incubated between the temperatures of 20 and 35 degrees C, while SerT is expressed when cells are grown at temperatures above 35 degrees C. Using a SerH3 cDNA clone as a hybridization probe, we determined that (i) the SerH3 gene is a member of a multigene family; (ii) most members of this multigene family are variably rearranged during macronuclear development; and (iii) the gene which produces the SerH3 mRNA is reproducibly rearranged during macronuclear development.


1989 ◽  
Vol 3 (12b) ◽  
pp. 2101-2112 ◽  
Author(s):  
D J Hunter ◽  
K Williams ◽  
S Cartinhour ◽  
G Herrick

1973 ◽  
Vol 13 (2) ◽  
pp. 479-509 ◽  
Author(s):  
K. G. MURTI

This report describes an ultrastructural investigation of macronuclear development following conjugation in Stylonychia mytilus (a spirotrichous ciliate) and Tetrahymena pyriformis (a holotrichous ciliate). In S. mytilus, polytene chromosomes are formed in the young macronucleus (macronuclear Anlage). They are subsequently broken between the bands by ‘membranous’ partitions; the assembly of the membranes appears to be concomitant with the formation of the polytene chromosomes. The membranes in the Anlage appear to originate from fibrous material seen in the early Anlage. This fibrous material in the earlier stages is seen concentrated at several points along the border of the inner nuclear membrane. In the later stages it is seen in the interior of the Anlage, outlining the developing polytene chromosomes. As the chromosomes reach the maximum degree of polyteny, the fibrous material condenses to acquire a membranous appearance and extends into the interband regions. The Anlage throughout this period shows a progressive increase in size. Subsequently, the membranes enclose individually each band plus portions of the 2 adjacent interband regions of the polytene chromosomes to form a large number of vesicles. After vesicle formation the Anlage shrinks, and the chromatin inside the vesicles shows degradative changes. Finally, the vesicles disappear, the membrane degradation products appear at the nuclear membrane, and the Anlage now contains nucleoli. The Anlage increases its DNA content by multiple rounds of replication to become a mature macronucleus. The ultra-structural changes observed in the Anlage support the idea of genetic diminution (i.e. extensive DNA synthesis, elimination of many DNA nucleotide sequences, and amplification of the remaining DNA nucleotide sequences in a second period of DNA synthesis) proposed earlier on the basis of cytochemical, biochemical, and limited electron-microscope studies. In T. pyriformis, the macronuclear development differs substantially from that of Stylonychia. Features such as the formation and degradation of polytene chromosomes are absent in the macronuclear development of Tetrahymena; the young macronucleus in this cell becomes a mature macronucleus by progressive increment in size and chromatin content with no apparent genetic diminution. These observations agree with cytochemical studies on the macronuclear development of Tetrahymena.


1975 ◽  
Vol 17 (3) ◽  
pp. 471-493 ◽  
Author(s):  
F.P. Doerder ◽  
L.E. Debault

Fluorescence cytophotometry was used to study nuclear DNA content and synthesis patterns during meiosis, fertilization and macronuclear development in the ciliated protozoon, Tetrahymena pyriformis, syngen 1. It was found that cells entered conjugation with a G1 (45C) macronucleus and a G2 (4C) micronucleus. During meiosis the micronucleus was reduced to 4 haploid nuclei, each with a 1C amount of DNA; each meiotic product then replicated to 2C, but only the nucleus next to the attachment membrane in each conjugant divided to form the two 1C gametic nuclei. The gametic nuclei replicated to 2C prior to fertilization; hence there was no S-period in the 4C fertilization nucleus (synkaryon). The first postzygotic division products immediately entered an S-period to become 4C, and at the second postzygotic division, each of the two 4C nuclei in each conjugant divided to form one 2C micronucleus and one 2C macronuclear Anlage. The macronuclear Anlagen began DNA synthesis immediately and were about 8C at the completion of conjugation; the micronuclei did not undergo rapid DNA doubling and measured between 2C and 3C when the conjugants separated. The old macronucleus did not participate in any S-period during conjugation and began to decompose after the second postzygotic division; it contained an average of 24C at the end of conjugation. From this sequence of nuclear divisions a pattern emerges that, unless a general cytoplasmic signal for DNA synthesis is suppressed, DNA synthesis always occurs in micronuclear division products immediately following separation of sister chromatids. Nuclear development continued in the first two cell cycles after conjugation. In exconjugants (the first cycle), macronuclear Anlagen underwent two rounds of DNA synthesis to become 32C and both micronuclei also underwent DNA synthesis. However, prior to the first cell division, one micronucleus and the old macronucleus completely disintegrated, and at the first cell division the remaining 4C micronucleus divided and one macronuclear Anlage was distributed to each resulting caryonide. At the end of the second cell cycle, the dividing macronucleus of each caryonide contained about 128C. These results relate to the question of ploidy of macronuclear subunits. It is argued that the G1 macronucleus contains 22 or 23 diploid subunits, each subunit being a copy of the diploid micronuclear genome. It is suggested that unequal macronuclear division relates to the question of subunit ploidy by playing a role in the phenomenon of macronuclear assortment.


1984 ◽  
Vol 4 (12) ◽  
pp. 2661-2667
Author(s):  
D Dawson ◽  
G Herrick

Approximately 20,000 different short, linear, macronuclear DNA molecules are derived from micronuclear sequences of Oxytricha fallax after conjugation. These macronuclear DNAs are terminated at both ends by 20 base pairs of the sequence 5'-dC4A4-3'. Sequences homologous to this repeat (C4A4+) are also abundant in the micronuclear chromosomes, but most reside at their telomeres. Here we show that nontelomeric C4A4 clusters of 20 base pairs or longer exist in only a few hundred copies per micronuclear genome. This demonstrates that nearly none of the 20,000 sequence blocks of micronuclear DNA destined to be macronuclear DNA molecules can be flanked by full-length (20-base pair) C4A4 clusters, and therefore C4A4 repeats must be added to most, if not all, macronuclear telomeres during macronuclear development. Six internal micronuclear C4A4+ loci were cloned, and their structural relationships with macronuclear and micronuclear sequences were examined. The possible origins and functions of these rare, micronuclear internal C4A4 loci are discussed.


1999 ◽  
Vol 9 (7) ◽  
pp. 654-661
Author(s):  
Christian Maercker ◽  
Heike Kortwig ◽  
Hans J. Lipps

DNA from the hypotrichous ciliatae Stylonychia lemnae was separated by PFGE. In addition to the separation of the macronuclear DNA molecules with a size up to ∼40 kb, we were able to separate the micronuclear DNA with a size between ∼90 kb and 2 Mb. One very prominent 90-kb DNA band appeared on the pulsed-field gels. We propose that this 90-kb DNA fragment represents a linear plasmid residing in the micronucleus in a very high copy number. About 10% of the micronuclear DNA consists of the 90-kb DNA molecule. It appears in the micronucleus as well as in the macronuclear anlagen during macronuclear development but not in the mature macronucleus. Thus, the multicopy DNA is eliminated during fragmentation of the macronuclear anlagen DNA in the course of macronuclear development. Therefore, this 90-kb DNA molecule might serve as an excellent tool to study the recognition and elimination of DNA during nuclear differentiation of hypotrichous ciliates.


1970 ◽  
Vol 47 (2) ◽  
pp. 395-407 ◽  
Author(s):  
John A. Kloetzel

The development of the macronucleus following conjugation in the hypotrichous ciliates Euplotes and Stylonychia has been examined with the electron microscope. Banded polytene chromosomes can be seen in thin sections of the macronuclear anlagen during the early periods of exconjugant development. As the chromosomes reach their maximum state of polyteny, sheets of fibrous material appear between the chromosomes and transect the chromosomes in the interband regions. Individual bands of the polytene chromosomes thus appear to be isolated in separate compartments. Subsequently, during the stage when the bulk of the polytenic DNA is degraded (1), these compartments swell, resulting in a nucleus packed with thousands of separate spherical chambers. Individual chromosomes are no longer discernible. The anlagen retain this compartmentalized condition for several hours, at the end of which time aggregates of dense material form within many of the compartments. The partitioning layers disperse shortly before replication bands appear within the elongating anlagen, initiating the second period of DNA synthesis characteristic of macronuclear development in these hypotrichs. The evidence presented here suggests that the "chromatin granules" seen in the mature vegetative macronucleus represent the material of single bands of the polytene chromosomes seen during the earlier stages of macronuclear development. The possibility is also discussed that the degradation of DNA in the polytene chromosomes may be genetically selective, which would result in a somatic macronucleus with a different genetic constitution than that of the micronucleus from which it was derived.


Cell ◽  
1984 ◽  
Vol 36 (4) ◽  
pp. 1045-1055 ◽  
Author(s):  
Lawrence A. Klobutcher ◽  
Carolyn L. Jahn ◽  
David M. Prescott

Sign in / Sign up

Export Citation Format

Share Document