Moduli Space for Fuchsian Groups

1988 ◽  
pp. 735-787 ◽  
Author(s):  
Kyoji Saito
Keyword(s):  
2010 ◽  
Vol 52 (2) ◽  
pp. 401-408 ◽  
Author(s):  
ANTONIO F. COSTA ◽  
MILAGROS IZQUIERDO

AbstractUsing uniformization of Riemann surfaces by Fuchsian groups and the equisymmetric stratification of the branch locus of the moduli space of surfaces of genus 4, we prove its connectedness. As a consequence, one can deform a surface of genus 4 with automorphisms, i.e. symmetric, to any other symmetric genus 4 surface through a path consisting entirely of symmetric surfaces.


1975 ◽  
Vol 59 ◽  
pp. 107-134 ◽  
Author(s):  
Hiroshi Umemura

In [17], Weil studied the space of representations of certain Fuchsian groups as a generalization of Jacobian variety. The theory of stable vector bundles over a curve developed by Mumford, Seshadri and others are the theory of unitary representations of Fuchsian groups. The moduli space of stable vector bundles over a curve is the space of the irreducible unitary representations of a Fuchsian group. The moduli space is studied in detail. Recently Mumford (unpubished) and Takemoto [12] introduced the notion of H-stable vector bundle over a non-singular projective algebraic surface. In this paper, we study the space of the irreducible unitary representations of the fundamental group of a hyperelliptic surface. Our view point is based on the theory of H-stable vector bundles of Takemoto [12] and [13]. We deal only with hyperelliptic surfaces. Our results should be generalized to the vector bundles over some other surfaces (See §3).


2009 ◽  
Vol 51 (1) ◽  
pp. 19-29 ◽  
Author(s):  
MILAGROS IZQUIERDO ◽  
DANIEL YING

AbstractA closed Riemann surface which can be realized as a three-sheeted covering of the Riemann sphere is called trigonal, and such a covering is called a trigonal morphism. If the trigonal morphism is a cyclic regular covering, the Riemann surface is called a cyclic trigonal Riemann surface. Using the characterization of cyclic trigonality by Fuchsian groups, we find the structure of the space of cyclic trigonal Riemann surfaces of genus 4.


2012 ◽  
Vol 111 (1) ◽  
pp. 53 ◽  
Author(s):  
Antonio F. Costa ◽  
Milagros Izquierdo

Let $g$ be an integer $\geq3$ and let $B_{g}=\{X\in\mathcal{M}_{g}: \mathrm{Aut}(X)\neq Id\}$ be the branch locus of $M_{g}$, where $M_{g}$ denotes the moduli space of compact Riemann surfaces of genus $g$. The structure of $B_{g}$ is of substantial interest because $B_{g}$ corresponds to the singularities of the action of the modular group on the Teichmüller space of surfaces of genus $g$ (see [14]). Kulkarni ([15], see also [13]) proved the existence of isolated points in the branch loci of the moduli spaces of Riemann surfaces. In this work we study the isolated connected components of dimension 1 in such loci. These isolated components of dimension one appear if the genus is $g=p-1$ with $p$ prime $\geq11$. We use uniformization by Fuchsian groups and the equisymmetric stratification of the branch loci.


2001 ◽  
Vol 15 (4) ◽  
pp. 279-289
Author(s):  
S. L. Dubovsky
Keyword(s):  

Author(s):  
Benson Farb ◽  
Dan Margalit

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


2021 ◽  
Vol 9 ◽  
Author(s):  
L. Göttsche ◽  
M. Kool ◽  
R. A. Williams

Abstract We conjecture a Verlinde type formula for the moduli space of Higgs sheaves on a surface with a holomorphic 2-form. The conjecture specializes to a Verlinde formula for the moduli space of sheaves. Our formula interpolates between K-theoretic Donaldson invariants studied by Göttsche and Nakajima-Yoshioka and K-theoretic Vafa-Witten invariants introduced by Thomas and also studied by Göttsche and Kool. We verify our conjectures in many examples (for example, on K3 surfaces).


Sign in / Sign up

Export Citation Format

Share Document