The Texture of Rocks in the Earth’s Deep Interior: Part II Application of Texturing to the Deep Earth

Author(s):  
Hans-Rudolf Wenk ◽  
Mohammad S.H. Bhuiyan
MRS Bulletin ◽  
1992 ◽  
Vol 17 (5) ◽  
pp. 30-37 ◽  
Author(s):  
A. Navrotsky ◽  
D.J. Weidner ◽  
R.C. Liebermann ◽  
C.T. Prewitt

Man has walked on the moon, sent probes to or near the surfaces of Mars and Venus, and dispatched vehicles to fly near comets, asteroids, and the outer planets and their moons. In contrast, a journey to the center of the Earth remains as unattainable and fictional as in Jules Verne's day. We know the interior of our planet from several types of evidence: direct sampling of rock brought to the surface by geologic process from depths no greater than 200 km, remote sensing especially by seismology (the study of natural or anthropogenic sound waves passing through the Earth), inferences from the chemistry of meteorites and from other geochemical arguments, and laboratory and computational simulations of the conditions at depth. The laboratory study of Earth materials at high temperatures and pressures is the subject of this review. In a sense, the basic question of deep earth geophysics is a peculiar sort of inverse problem in materials science; rather than determining the properties of a given material, one seeks to find materials, under constraints of natural elemental abundances, which have properties consistent with seismological and other geophysical observations.What are the “hard facts” about planet Earth as a material system? Its radius and mass are well constrained, as are pressure and density as a function of depth (see Figure 1). Its vertical temperature distribution is less well known, but it is clear that the interior is hot, with temperatures in the mantle reaching perhaps 3000 K and in the core perhaps 6000–7000 K.


2020 ◽  
Author(s):  
Nore Stolte ◽  
Junting Yu ◽  
Zixin Chen ◽  
Dimitri A. Sverjensky ◽  
Ding Pan

The water-gas shift reaction is a key reaction in Fischer-Tropsch-type synthesis, which is widely believed to generate hydrocarbons in the deep carbon cycle, but is little known at extreme pressure-temperature conditions found in Earth’s upper mantle. Here, we performed extensive ab initio molecular dynamics simulations and free energy calculations to study the water-gas shift reaction. We found the direct formation of formic acid out of CO and supercritical water at 10∼13 GPa and 1400 K without any catalyst. Contrary to the common assumption that formic acid or formate is an intermediate product, we found that HCOOH is thermodynamically more stable than the products of the water-gas shift reaction above 3 GPa and at 1000∼1400 K. Our study suggests that the water-gas shift reaction may not happen in Earth’s upper mantle, and formic acid or formate may be an important carbon carrier, participating in many geochemical processes in deep Earth.<br>


Author(s):  
Paolo Dulio ◽  
Andrea Frosini ◽  
Simone Rinaldi ◽  
Lama Tarsissi ◽  
Laurent Vuillon

AbstractA remarkable family of discrete sets which has recently attracted the attention of the discrete geometry community is the family of convex polyominoes, that are the discrete counterpart of Euclidean convex sets, and combine the constraints of convexity and connectedness. In this paper we study the problem of their reconstruction from orthogonal projections, relying on the approach defined by Barcucci et al. (Theor Comput Sci 155(2):321–347, 1996). In particular, during the reconstruction process it may be necessary to expand a convex subset of the interior part of the polyomino, say the polyomino kernel, by adding points at specific positions of its contour, without losing its convexity. To reach this goal we consider convexity in terms of certain combinatorial properties of the boundary word encoding the polyomino. So, we first show some conditions that allow us to extend the kernel maintaining the convexity. Then, we provide examples where the addition of one or two points causes a loss of convexity, which can be restored by adding other points, whose number and positions cannot be determined a priori.


Author(s):  
Nore Stolte ◽  
Junting Yu ◽  
Zixin Chen ◽  
Dimitri A. Sverjensky ◽  
Ding Pan

2021 ◽  
Vol 7 (4) ◽  
pp. eabb4644
Author(s):  
Yuri N. Palyanov ◽  
Yuri M. Borzdov ◽  
Alexander G. Sokol ◽  
Yuliya V. Bataleva ◽  
Igor N. Kupriyanov ◽  
...  

Most natural diamonds are formed in Earth’s lithospheric mantle; however, the exact mechanisms behind their genesis remain debated. Given the occurrence of electrochemical processes in Earth’s mantle and the high electrical conductivity of mantle melts and fluids, we have developed a model whereby localized electric fields play a central role in diamond formation. Here, we experimentally demonstrate a diamond crystallization mechanism that operates under lithospheric mantle pressure-temperature conditions (6.3 and 7.5 gigapascals; 1300° to 1600°C) through the action of an electric potential applied across carbonate or carbonate-silicate melts. In this process, the carbonate-rich melt acts as both the carbon source and the crystallization medium for diamond, which forms in assemblage with mantle minerals near the cathode. Our results clearly demonstrate that electric fields should be considered a key additional factor influencing diamond crystallization, mantle mineral–forming processes, carbon isotope fractionation, and the global carbon cycle.


Sign in / Sign up

Export Citation Format

Share Document