Metal Particles as Additives in Ceramic Composite Materials: A Review of Mechanical Properties and Their Origin

Author(s):  
Mohammed Sabah Ali ◽  
Azmah Hanim Mohamed Ariff ◽  
Saleem Hashmi ◽  
Dermot Brabazon
2015 ◽  
Vol 825-826 ◽  
pp. 215-223 ◽  
Author(s):  
Daisy Nestler ◽  
Natalia Nier ◽  
Kristina Roder ◽  
Erik Päßler ◽  
Julia Weißhuhn ◽  
...  

This article focuses on the development of phenolic resin moulding materials for the production of new carbon fibre-reinforced ceramic composite materials based on C/C-SiC by utilising the LSI (liquid silicon infiltration) production method. The production of these moulding materials is being accomplished by combining phenolic resin and carbon fibres with the addition of a few selected parts of processing aids, during which the influence of the used lubricants on the processability of the moulding materials is examined. The starting materials, microstructures and mechanical properties of the materials were characterised at every step of the entire process (CFRP and C/C composites) as well as the end of the whole production (C/C-SiC composites). During this investigation a link between the portions of the lubricant used, the forming of the porosity and the impact on the mechanical properties was discovered. In regards to the optimisation of the process the involved parties were able to determine an optimal lubricant ratio.


2019 ◽  
Vol 118 (4) ◽  
pp. 159-168 ◽  
Author(s):  
Alejandro Carrasco-Pena ◽  
Ryan Jordan ◽  
Jessica Dieguez ◽  
Arturo Coronado-Rodríguez ◽  
Veli B. Ozdemir ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 370 ◽  
Author(s):  
Bogdan Stefan Vasile ◽  
Alexandra Catalina Birca ◽  
Vasile Adrian Surdu ◽  
Ionela Andreea Neacsu ◽  
Adrian Ionut Nicoară

This paper is focused on the basic properties of ceramic composite materials used as thermal barrier coatings in the aerospace industry like SiC, ZrC, ZrB2 etc., and summarizes some principal properties for thermal barrier coatings. Although the aerospace industry is mainly based on metallic materials, a more attractive approach is represented by ceramic materials that are often more resistant to corrosion, oxidation and wear having at the same time suitable thermal properties. It is known that the space environment presents extreme conditions that challenge aerospace scientists, but simultaneously, presents opportunities to produce materials that behave almost ideally in this environment. Used even today, metal-matrix composites (MMCs) have been developed since the beginning of the space era due to their high specific stiffness and low thermal expansion coefficient. These types of composites possess properties such as high-temperature resistance and high strength, and those potential benefits led to the use of MMCs for supreme space system requirements in the late 1980s. Electron beam physical vapor deposition (EB-PVD) is the technology that helps to obtain the composite materials that ultimately have optimal properties for the space environment, and ceramics that broadly meet the requirements for the space industry can be silicon carbide that has been developed as a standard material very quickly, possessing many advantages. One of the most promising ceramics for ultrahigh temperature applications could be zirconium carbide (ZrC) because of its remarkable properties and the competence to form unwilling oxide scales at high temperatures, but at the same time it is known that no material can have all the ideal properties. Another promising material in coating for components used for ultra-high temperature applications as thermal protection systems is zirconium diboride (ZrB2), due to its high melting point, high thermal conductivities, and relatively low density. Some composite ceramic materials like carbon–carbon fiber reinforced SiC, SiC-SiC, ZrC-SiC, ZrB2-SiC, etc., possessing low thermal conductivities have been used as thermal barrier coating (TBC) materials to increase turbine inlet temperatures since the 1960s. With increasing engine efficiency, they can reduce metal surface temperatures and prolong the lifetime of the hot sections of aero-engines and land-based turbines.


Ionics ◽  
2013 ◽  
Vol 19 (12) ◽  
pp. 1751-1760 ◽  
Author(s):  
A. Rajani Malathi ◽  
Ch. Sameera Devi ◽  
G. S. Kumar ◽  
M. Vithal ◽  
G. Prasad

Sign in / Sign up

Export Citation Format

Share Document