Isolation of High-Molecular-Weight DNA by Salting-Out

2017 ◽  
pp. 777-780
PROTOPLASMA ◽  
1987 ◽  
Vol 141 (2-3) ◽  
pp. 139-148 ◽  
Author(s):  
Christine Mederic ◽  
Odile Bertaux ◽  
J. D. Rouzeau ◽  
R. Valencia

1992 ◽  
Vol 38 (1) ◽  
pp. 65-68 ◽  
Author(s):  
Ken F. Jarrell ◽  
David Faguy ◽  
Anne M. Hebert ◽  
Martin L. Kalmokoff

High molecular weight DNA was readily isolated from all methanogens treated, as well as from thermophilic anaerobic eubacteria, by grinding cells frozen in liquid N2, prior to lysis with SDS. DNA can subsequently be purified by the usual phenol–chloroform extractions. The procedure yields DNA readily cut by restriction enzymes and suitable for oligonucleotide probing, as well as for mole percent G + C content determination by thermal denaturation. The method routinely yields DNA of high molecular weight and is an improvement over DNA isolation methods for many methanogens, which often involve an initial breakage of the cells in a French pressure cell. Key words: methanogens, archaebacteria, archaea, DNA isolation.


1993 ◽  
Vol 71 (9-10) ◽  
pp. 488-500 ◽  
Author(s):  
Valerie M. Weaver ◽  
Boleslaw Lach ◽  
P. Roy Walker ◽  
Marianna Sikorska

Three chemically distinct serine, but not cysteine, protease inhibitors (phenylmethylsulphonyl fluoride, N-tosyl-L-phenylalanylchloromethyl ketone and 3,4-dichloroisocoumarin) prevented, in a dose-dependent manner, the characteristic apoptotic internucleosomal DNA cleavage (DNA ladder) typically observed in thymocytes in response to dexamethasone and teniposide VM-26. This effect was not the result of a direct inhibition of the Ca2+, Mg2+-dependent endonuclease, since oligonucleosomal DNA cleavage occurred in the presence of these inhibitors in isolated nuclei. The proteolytic step occurred at a very early stage of apoptosis, and preincubation of thymocytes with the inhibitors before dexamethasone or teniposide VM-26 were added irreversibly suppressed ladder formation. This implied that the cellular effector(s) of these compounds preexisted and were not resynthesized in response to the inducers of apoptosis. Serine protease inhibitors also suppressed apoptotic cell shrinkage and complete nuclear collapse, suggesting that these morphological changes were directly related to internucleosomal fragmentation of DNA. However, the serine protease inhibitors did not prevent high molecular weight DNA cleavage (> 50 kilobases) that preceded the ladder formation and thymocytes still died by apoptosis. This supported the view that internucleosomal DNA cleavage, considered to be the biochemical marker of apoptosis, might in fact be a late and dispensable step and that the newly described high molecular weight DNA cleavage might be a better indicator of apoptosis.Key words: serine protease, apoptosis, internucleosomal DNA fragmentation, high molecular weight DNA cleavage, protease inhibitors.


1947 ◽  
Vol 134 (875) ◽  
pp. 181-201 ◽  

Evidence has been presented indicating that the action of concentrated solutions of salts on bacterial respiration may be partly explained in terms of salting-out. It has been suggested that the material upon which this action is exerted is probably one of the proteins concerned in respiration, perhaps a dehydrogenating enzyme. This theory provides satisfactory explanations for: ( a ) the relation between salt con­centration and rate of respiration or dehydrogenase activity; ( b ) the effect of temperature on this relation; and ( c ) the effect of pH on this relation, if it is further supposed that only the zwitterionic fraction of the protein is involved. The relative actions of various salts are in fair agreement with this suggestion, but provide no very convincing evidence either for or against it. The chief point of difficulty lies in the range of concentration over which the action is manifest. With halophilic bacteria, the evidence is consonant with the above view if the protein involved is one of high molecular weight. With normal organisms the salt concentra­tions are much lower than those causing salting-out. There is a little evidence that in normal organisms the dehydrogenating enzymes are less sensitive to salts than the intact cells, which may be the source of the discrepancy. No reason for this can yet be suggested, but the property must be absent from the enzymes of halophilic organisms, and whatever it is, its absence must be the foundation of the halophilic character.


2019 ◽  
Author(s):  
Rasmus Dam Wollenberg ◽  
Brian Strehlow ◽  
Astrid Schuster

This protocol was used to extract high molecular weight DNA from the sponge (porifera) Halichondria panicea. This protocol contains slight modifications from that presented in Ausubel et al (1995). References: Ausubel, F.; Brent, R.; Kingston, R.; Moore, D.; Seidman, J.G.; Smith, J.;Struhl, K. Short Protocols in Molecular Biology(1995), 3rd ed., Unit 2.1: page 2-3


Sign in / Sign up

Export Citation Format

Share Document