Natural Language Processing for Large-Scale Medical Image Analysis Using Deep Learning

Author(s):  
Hoo-Chang Shin ◽  
Le Lu ◽  
Ronald M. Summers
2019 ◽  
Vol 14 (4) ◽  
pp. 450-469 ◽  
Author(s):  
Jiechao Ma ◽  
Yang Song ◽  
Xi Tian ◽  
Yiting Hua ◽  
Rongguo Zhang ◽  
...  

AbstractAs a promising method in artificial intelligence, deep learning has been proven successful in several domains ranging from acoustics and images to natural language processing. With medical imaging becoming an important part of disease screening and diagnosis, deep learning-based approaches have emerged as powerful techniques in medical image areas. In this process, feature representations are learned directly and automatically from data, leading to remarkable breakthroughs in the medical field. Deep learning has been widely applied in medical imaging for improved image analysis. This paper reviews the major deep learning techniques in this time of rapid evolution and summarizes some of its key contributions and state-of-the-art outcomes. The topics include classification, detection, and segmentation tasks on medical image analysis with respect to pulmonary medical images, datasets, and benchmarks. A comprehensive overview of these methods implemented on various lung diseases consisting of pulmonary nodule diseases, pulmonary embolism, pneumonia, and interstitial lung disease is also provided. Lastly, the application of deep learning techniques to the medical image and an analysis of their future challenges and potential directions are discussed.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2132
Author(s):  
Kyriakos D. Apostolidis ◽  
George A. Papakostas

In the past years, deep neural networks (DNN) have become popular in many disciplines such as computer vision (CV), natural language processing (NLP), etc. The evolution of hardware has helped researchers to develop many powerful Deep Learning (DL) models to face numerous challenging problems. One of the most important challenges in the CV area is Medical Image Analysis in which DL models process medical images—such as magnetic resonance imaging (MRI), X-ray, computed tomography (CT), etc.—using convolutional neural networks (CNN) for diagnosis or detection of several diseases. The proper function of these models can significantly upgrade the health systems. However, recent studies have shown that CNN models are vulnerable under adversarial attacks with imperceptible perturbations. In this paper, we summarize existing methods for adversarial attacks, detections and defenses on medical imaging. Finally, we show that many attacks, which are undetectable by the human eye, can degrade the performance of the models, significantly. Nevertheless, some effective defense and attack detection methods keep the models safe to an extent. We end with a discussion on the current state-of-the-art and future challenges.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaoqing Liu ◽  
Kunlun Gao ◽  
Bo Liu ◽  
Chengwei Pan ◽  
Kongming Liang ◽  
...  

Importance. With the booming growth of artificial intelligence (AI), especially the recent advancements of deep learning, utilizing advanced deep learning-based methods for medical image analysis has become an active research area both in medical industry and academia. This paper reviewed the recent progress of deep learning research in medical image analysis and clinical applications. It also discussed the existing problems in the field and provided possible solutions and future directions. Highlights. This paper reviewed the advancement of convolutional neural network-based techniques in clinical applications. More specifically, state-of-the-art clinical applications include four major human body systems: the nervous system, the cardiovascular system, the digestive system, and the skeletal system. Overall, according to the best available evidence, deep learning models performed well in medical image analysis, but what cannot be ignored are the algorithms derived from small-scale medical datasets impeding the clinical applicability. Future direction could include federated learning, benchmark dataset collection, and utilizing domain subject knowledge as priors. Conclusion. Recent advanced deep learning technologies have achieved great success in medical image analysis with high accuracy, efficiency, stability, and scalability. Technological advancements that can alleviate the high demands on high-quality large-scale datasets could be one of the future developments in this area.


2020 ◽  
Vol 2 (4) ◽  
pp. 209-215
Author(s):  
Eriss Eisa Babikir Adam

The computer system is developing the model for speech synthesis of various aspects for natural language processing. The speech synthesis explores by articulatory, formant and concatenate synthesis. These techniques lead more aperiodic distortion and give exponentially increasing error rate during process of the system. Recently, advances on speech synthesis are tremendously moves towards deep learning process in order to achieve better performance. Due to leverage of large scale data gives effective feature representations to speech synthesis. The main objective of this research article is that implements deep learning techniques into speech synthesis and compares the performance in terms of aperiodic distortion with prior model of algorithms in natural language processing.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1384
Author(s):  
Yin Dai ◽  
Yifan Gao ◽  
Fayu Liu

Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it cannot deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model on two datasets, parotid gland tumors classification and knee injury classification. Combining our contributions, we achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other state-of-the-art CNN-based models. The results of the proposed method are promising and have tremendous potential to be applied to a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to multi-modal medical image classification.


Sign in / Sign up

Export Citation Format

Share Document