Radiative Property Predictions from Electromagnetic Wave Theory

2022 ◽  
pp. 31-58
Author(s):  
Michael F. Modest ◽  
Sandip Mazumder
2003 ◽  
Vol 17 (15) ◽  
pp. 829-839
Author(s):  
R. T. Tagiyeva ◽  
M. Saglam

Localized magnetostatic waves and magnetic polaritons at the junction of the magnetic material and magnetic superlattice composed of the alternating ferromagnetic or ferromagnetic and nonmagnetic layers are investigated in the framework of the electromagnetic wave theory in Voigt geometry. The general dispersion relation for localized magnetic polaritons and magnetostatic waves (MW) are derived in the long-wavelength limit. The dispersion curves and frequency region of the exsistence of the localized MW and magnetic polaritons are calculated numerically.


2020 ◽  
pp. 363-388
Author(s):  
John R. Howell ◽  
M. Pinar Mengüç ◽  
Kyle Daun ◽  
Robert Siegel

Author(s):  
Brendan P. Flynn ◽  
Amit Bhole ◽  
Charles DiMarzio ◽  
Jeffrey W. Ruberti

Methods to assay fibrillar growth and degradation at sub-light scales include: fluorescence assays using FITC-collagen or FRAP, destructive preparation and measurement using electron microscopy, and light occlusion methods including turbidity and absorption methods. Many of these methods require the outright destruction, or at least modification via labelling, of the sample in question. This requirement can slow experimentation and introduce additional variability or even alter the reaction rate kinetics. The two methods (absorption and turbidity) which are label-free are bulk averaging methods and cannot isolate subsets of fibrils (e.g. fibrils under load).


Sign in / Sign up

Export Citation Format

Share Document