Magnetic Superlattice: Localized Magnetostatic Waves and Magnetic Polaritons

2003 ◽  
Vol 17 (15) ◽  
pp. 829-839
Author(s):  
R. T. Tagiyeva ◽  
M. Saglam

Localized magnetostatic waves and magnetic polaritons at the junction of the magnetic material and magnetic superlattice composed of the alternating ferromagnetic or ferromagnetic and nonmagnetic layers are investigated in the framework of the electromagnetic wave theory in Voigt geometry. The general dispersion relation for localized magnetic polaritons and magnetostatic waves (MW) are derived in the long-wavelength limit. The dispersion curves and frequency region of the exsistence of the localized MW and magnetic polaritons are calculated numerically.

1988 ◽  
Vol 6 (2) ◽  
pp. 199-210 ◽  
Author(s):  
D. Pesme ◽  
S. J. Karttunen ◽  
R. R. E. Salomaa ◽  
G. Laval ◽  
N. Silvestre

The coupling of a large amplitude plasmon, generated by the beat-wave process, to ion acoustic waves may lead to modulational or decay instabilities, which are investigated here. A general dispersion relation obtainable from Zakharov equations predicts large growth rates (∼ωpi) for short wavelength modulations. To avoid these, extremely short pulse lengths are required in the beat-wave experiments. Due to the very long wavelength of the beat-plasmon, the decay instability is not likely below the ke V-temperatures.


2013 ◽  
Vol 22 (01) ◽  
pp. 1350004 ◽  
Author(s):  
XING RI JIN ◽  
JINWOO PARK ◽  
HAIYU ZHENG ◽  
YOUNGPAK LEE ◽  
JOO YULL RHEE ◽  
...  

The classical electromagnetically-induced transparency (EIT)-like switching in metamaterials was experimentally demonstrated in the microwave-frequency region. The metameterial unit cell consists of two identical split-ring resonators, which are arranged on both sides of a dielectric substrate with 90°-rotation asymmetry. In our scheme, the classical EIT-like switching can be achieved by changing the polarization of the incident electromagnetic wave.


2020 ◽  
pp. 363-388
Author(s):  
John R. Howell ◽  
M. Pinar Mengüç ◽  
Kyle Daun ◽  
Robert Siegel

Sign in / Sign up

Export Citation Format

Share Document