Multi-stable patterns coexisting in memristor synapse-coupled Hopfield neural network

Author(s):  
Mo Chen ◽  
Cheng-jie Chen ◽  
Bo-cheng Bao ◽  
Quan Xu
2021 ◽  
Author(s):  
Leila Eftekhari ◽  
Mohammad Amirian

Abstract A memristor is a non-linear two-terminal electrical element that incorporates memory features and nanoscale properties, enabling us to design very high-density artificial neural networks. To examine the embedded memory property, we should use mathematical frameworks like fractional calculus, which is capable of doing so. Here, we first present a fractional-order memristor synapse-coupling Hopfield neural network on two neurons and then extend the model to a neural network with a ring structure that consists of $n$ sub-network neurons. Necessary and sufficient conditions for the stability of equilibrium points are investigated, highlighting the dependency of the stability on the fractional-order value and the number of neurons. Numerical simulations and bifurcation analysis, along with Lyapunov exponents, are given in the two-neuron case that substantiates the theoretical findings, suggesting possible routes towards chaos when the fractional order of the system increases. In the $n$-neuron case also, it is revealed that the stability depends on the structure and number of sub-networks.


2019 ◽  
Vol 95 (4) ◽  
pp. 3385-3399 ◽  
Author(s):  
Chengjie Chen ◽  
Jingqi Chen ◽  
Han Bao ◽  
Mo Chen ◽  
Bocheng Bao

2009 ◽  
Vol 29 (4) ◽  
pp. 1028-1031
Author(s):  
Wei-xin GAO ◽  
Xiang-yang MU ◽  
Nan TANG ◽  
Hong-liang YAN

2006 ◽  
Vol 13B (3) ◽  
pp. 323-328
Author(s):  
Yukhuu Ankhbayar ◽  
Suk-Hyung Hwang ◽  
Young-Sup Hwang

Sign in / Sign up

Export Citation Format

Share Document