scholarly journals Stability Analysis of  Fractional Order Memristor Synapse-coupled Hopfield Neural Network with Ring Structure

Author(s):  
Leila Eftekhari ◽  
Mohammad Amirian

Abstract A memristor is a non-linear two-terminal electrical element that incorporates memory features and nanoscale properties, enabling us to design very high-density artificial neural networks. To examine the embedded memory property, we should use mathematical frameworks like fractional calculus, which is capable of doing so. Here, we first present a fractional-order memristor synapse-coupling Hopfield neural network on two neurons and then extend the model to a neural network with a ring structure that consists of $n$ sub-network neurons. Necessary and sufficient conditions for the stability of equilibrium points are investigated, highlighting the dependency of the stability on the fractional-order value and the number of neurons. Numerical simulations and bifurcation analysis, along with Lyapunov exponents, are given in the two-neuron case that substantiates the theoretical findings, suggesting possible routes towards chaos when the fractional order of the system increases. In the $n$-neuron case also, it is revealed that the stability depends on the structure and number of sub-networks.

Author(s):  
A. M. Yousef ◽  
S. Z. Rida ◽  
Y. Gh. Gouda ◽  
A. S. Zaki

AbstractIn this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nadjette Debbouche ◽  
Adel Ouannas ◽  
Iqbal M. Batiha ◽  
Giuseppe Grassi ◽  
Mohammed K. A. Kaabar ◽  
...  

This study intends to examine different dynamics of the chaotic incommensurate fractional-order Hopfield neural network model. The stability of the proposed incommensurate-order model is analyzed numerically by continuously varying the values of the fractional-order derivative and the values of the system parameters. It turned out that the formulated system using the Caputo differential operator exhibits many rich complex dynamics, including symmetry, bistability, and coexisting chaotic attractors. On the other hand, it has been detected that by adapting the corresponding controlled constants, such systems possess the so-called offset boosting of three variables. Besides, the resultant periodic and chaotic attractors can be scattered in several forms, including 1D line, 2D lattice, and 3D grid, and even in an arbitrary location of the phase space. Several numerical simulations are implemented, and the obtained findings are illustrated through constructing bifurcation diagrams, computing Lyapunov exponents, calculating Lyapunov dimensions, and sketching the phase portraits in 2D and 3D projections.


Author(s):  
M. Busłowicz

Abstract The stability problem of continuous-time linear fractional order systems with state delay is considered. New simple necessary and sufficient conditions for the asymptotic stability are established. The conditions are given in terms of eigenvalues of the state matrix and time delay. It is shown that in the complex plane there exists such a region that location in this region of all eigenvalues of the state matrix multiplied by delay in power equal to the fractional order is necessary and sufficient for the asymptotic stability. Parametric description of boundary of this region is derived and simple new analytic necessary and sufficient conditions for the stability are given. Moreover, it is shown that the stability of the fractional order system without delay is necessary for the stability of this system with delay. The considerations are illustrated by a numerical example.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Jiangang Zhang ◽  
Juan Nan ◽  
Wenju Du ◽  
Yandong Chu ◽  
Hongwei Luo

We introduce a discretization process to discretize a modified fractional-order optically injected semiconductor lasers model and investigate its dynamical behaviors. More precisely, a sufficient condition for the existence and uniqueness of the solution is obtained, and the necessary and sufficient conditions of stability of the discrete system are investigated. The results show that the system’s fractional parameter has an effect on the stability of the discrete system, and the system has rich dynamic characteristics such as Hopf bifurcation, attractor crisis, and chaotic attractors.


Filomat ◽  
2018 ◽  
Vol 32 (11) ◽  
pp. 3779-3789 ◽  
Author(s):  
Yadong Liu ◽  
Wenjun Liu

In this paper, we study the dynamic behavior and control of the fractional-order nutrientphytoplankton-zooplankton system. First, we analyze the stability of the fractional-order nutrient-plankton system and get the critical stable value of fractional orders. Then, by applying the linear feedback control and Routh-Hurwitz criterion, we yield the sufficient conditions to stabilize the system to its equilibrium points. Finally, Under a modified fractional-order Adams-Bashforth-Monlton algorithm, we simulate the results respectively.


2021 ◽  
pp. 002029402110211
Author(s):  
Tao Chen ◽  
Damin Cao ◽  
Jiaxin Yuan ◽  
Hui Yang

This paper proposes an observer-based adaptive neural network backstepping sliding mode controller to ensure the stability of switched fractional order strict-feedback nonlinear systems in the presence of arbitrary switchings and unmeasured states. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller. An observer is used for states estimation of the fractional order systems. The sliding mode control technology is introduced to enhance robustness. The unknown nonlinear functions and uncertain disturbances are approximated by the radial basis function neural networks (RBFNNs). The stability of system is ensured by the constructed Lyapunov functions. The fractional adaptive laws are proposed to update uncertain parameters. The proposed controller can ensure convergence of the tracking error and all the states remain bounded in the closed-loop systems. Lastly, the feasibility of the proposed control method is proved by giving two examples.


2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


2021 ◽  
Vol 31 (02) ◽  
pp. 2150018
Author(s):  
Wentao Huang ◽  
Chengcheng Cao ◽  
Dongping He

In this article, the complex dynamic behavior of a nonlinear aeroelastic airfoil model with cubic nonlinear pitching stiffness is investigated by applying a theoretical method and numerical simulation method. First, through calculating the Jacobian of the nonlinear system at equilibrium, we obtain necessary and sufficient conditions when this system has two classes of degenerated equilibria. They are described as: (1) one pair of purely imaginary roots and one pair of conjugate complex roots with negative real parts; (2) two pairs of purely imaginary roots under nonresonant conditions. Then, with the aid of center manifold and normal form theories, we not only derive the stability conditions of the initial and nonzero equilibria, but also get the explicit expressions of the critical bifurcation lines resulting in static bifurcation and Hopf bifurcation. Specifically, quasi-periodic motions on 2D and 3D tori are found in the neighborhoods of the initial and nonzero equilibria under certain parameter conditions. Finally, the numerical simulations performed by the fourth-order Runge–Kutta method provide a good agreement with the results of theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document